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Abstract

This paper concerns Floer homology for periodic orbits and for a Lagrangian intersection

problem on the cotangent bundle T
∗
M of a compact orientable manifold M . The first result

is a new L
∞ estimate for the solutions of the Floer equation, which allows to deal with

a larger - and more natural - class of Hamiltonians. The second and main result is a new

construction of the isomorphism between the Floer homology and the singular homology of the

free loop space of M , in the periodic case, or of the based loop space of M , in the Lagrangian

intersection problem. The idea for the construction of such an isomorphism is to consider a

Hamiltonian which is the Legendre transform of a Lagrangian on TM , and to construct an

isomorphism between the Floer complex and the Morse complex of the classical Lagrangian

action functional on the space of W
1,2 free or based loops on M .

Introduction

Let M be a compact orientable smooth manifold without boundary. Points in its cotangent bundle
T ∗M will be denoted by (q, p), with q ∈ M and p ∈ T ∗

q M . The manifold T ∗M has a canonical
1-form, the Liouville form θ = pdq, whose differential is the standard symplectic form ω = dp∧dq.
A time-dependent and 1-periodic Hamiltonian function H : T × T ∗M → R, T = R/Z, produces
the time-dependent Hamiltonian vector field XH on T ∗M , defined by ω(XH , ·) = −dH , whose
1-periodic orbits are the critical points of the Hamiltonian action functional

A(x) =

∫

T

x∗(θ) −
∫ 1

0

H(t, x(t)) dt

on the space of smooth loops on T ∗M . We shall denote the set of all 1-periodic orbits of XH by
P(H), and we shall assume that every 1-periodic orbit is non-degenerate (a condition which holds
for a generic choice of H , in several reasonable senses).

Let us assume that H behaves as a positive quadratic form in the p variables for |p| large.
More precisely, let us assume the following conditions:

(H1) dH(t, q, p)
[
p ∂

∂p

]
−H(t, q, p) ≥ h0|p|2 − h1, for some constants h0 > 0 and h1 ≥ 0;

(H2) |∇qH(t, q, p)| ≤ h2(1 + |p|2), |∇pH(t, q, p)| ≤ h2(1 + |p|), for some constant h2 ≥ 0.

These assumptions are stated in terms of some metric on M , but they are actually independent
of the choice of the metric, in the sense that if the metric on M is changed then (H1) and (H2)
will still hold, with different constants h0, h1, h2. Notice also that these conditions involve only
the behavior of H for |p| large, and they impose no restriction on the behavior of H on compact
subsets of T ∗M . Physical Hamiltonians of the form

H(t, q, p) =
1

2
|T (t, q)p−A(t, q)|2 + V (t, q),
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where the symmetric tensor T ∗T is everywhere positive, satisfy (H1) and (H2). Let us endow
T ∗M with a time-dependent 1-periodic ω-compatible almost complex structure J , assumed to be
close enough to the almost complex structure induced by some metric on M .

Under these assumptions, the elements of P(H) generate a chain complex of Abelian groups, the
Floer complex {CF∗(H), ∂∗(H, J)}. Indeed, (H1) and (H2) easily imply that the set of x ∈ P(H)
with A(x) ≤ a is finite for every real a, and we will prove that the set of solutions u : R×T → T ∗M
of the Floer equation

∂su− J(t, u)(∂tu−XH(t, u)) = 0 ∀(s, t) ∈ R × T, (1)

with action bound |A(u(s, ·))| ≤ a for every s ∈ R, is bounded in L∞. The latter statement
improves the L∞ estimates proved by Cieliebak [4] under more restrictive - and not metric inde-
pendent - assumptions on the Hamiltonian. Essentially, the reason why we get better estimates is
that we deal directly with the Cauchy-Riemann operator, instead than differentiating and using
the maximum principle for the Laplace operator.

Then the methods of standard Floer theory for compact symplectic manifolds can be applied.
Actually, the situation is somehow simpler than the general compact case, because the presence of
the Lagrangian foliation given by the fibers of T ∗M implies that the Conley-Zehnder index µCZ(x)
of every x ∈ P(H) is a well-defined integer, and because the exactness of ω excludes the possible
lack of compactness of solutions of (1) coming from the phenomenon of bubbling of J-holomorphic
spheres. Therefore, the equation (1) can be successfully seen as the negative gradient equation for
the action functional A, and the analogue of Morse theory for such a functional can be developed:
if CFk(H) denotes the free Abelian group generated by the elements of P(H) of Conley-Zehnder
index k, one constructs a boundary operator

∂k(H, J) : CFk(H) → CFk−1(H)

by counting the number of solutions of (1) which connect elements of P(H) with Conley-Zehnder
index k to those with index k−1. The isomorphism class of the chain complex {CF∗(H), ∂∗(H, J)}
- called the Floer complex of (T ∗M,H, J) - does not depend on the choice of the almost complex
structure J . The homology of the Floer complex does not depend on the Hamiltonian H , as long
as H satisfies (H1) and (H2) (see [20] for other possible choices, such as the case of compactly
supported Hamiltonians). Thus it makes sense to talk about the Floer homology of T ∗M , which
we denote by HF∗(T

∗M).
Unlike the compact case where the homology of the Floer complex is just the singular homology

of the underlying symplectic manifold, the homology of the Floer homology of T ∗M can be fairly
complicated. Indeed, Viterbo [33] has shown that it is isomorphic to the singular homology of
Λ(M), the free loop space of M . His proof makes use of generating functions and of Traynor’s
homology for generating functions [32]. A complete proof is contained in [34]. See also [18], and
[19]. Actually, in Viterbo’s work cohomology is considered, and the use of L∞ estimates for wide
classes of Hamiltonians is avoided, by considering the Floer cohomology of the compact symplectic
manifold with convex contact-type boundary {(q, p) ∈ T ∗M | |p| ≤ r}, and then taking a limit of
the Floer groups for r → +∞.

Another beautiful approach to the question of the isomorphism between the Floer homology
of T ∗M and the singular homology of Λ(M), has been recently proposed by Salamon and Weber
[28]. Their idea consists in considering a Hamiltonian of the form

H(t, q, p) =
1

2
|p|2 + V (t, q),

and almost complex structures which in the horizontal-vertical splitting of TT ∗M given by some
metric have the form

Jǫ =

(
0 ǫ

−1/ǫ 0

)
.

Writing u = (q, p), and making the change of variable s 7→ s/ǫ, the Floer equation (1) becomes
{
∂sq −∇tp−∇V (t, q) = 0,

ǫ2∇sp+ ∂tq − p = 0.
(2)
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As ǫ tends to 0 one obtains, at least formally, that p = ∂tq and q solves the heat equation

∂sq −∇t∂tq −∇V (t, q) = 0, (3)

where s plays the role of time, and t of space. This is a better equation than the Floer equation,
because the corresponding Cauchy problem is well-posed in suitable spaces, and one can derive the
equivalent of Morse theory for its flow, obtaining a chain complex whose homology can be proved
to be isomorphic to the singular homology of Λ(M). A rigorous formulation of the asymptotics for
ǫ going to 0 then shows that for any a ∈ R there is some small ǫ for which the Floer subcomplex
given by solutions of action not exceeding a is isomorphic to the corresponding subcomplex of
the heat flow equation, just because there is a one-to-one correspondence between the relevant
solutions of the corresponding PDE’s. A limit for a→ +∞ then allows to conclude.

The aim of this paper is to present a third construction of the isomorphism between the Floer
homology of T ∗M and the singular homology of Λ(M). Taking advantage of the freedom in the
choice of the Hamiltonian, provided that it satisfies (H1) and (H2), we chooseH to be the Legendre
transform of a Lagrangian function L : T × TM → R, which is assumed to be strongly convex on
the fibers TqM :

(L1) ∇vvL(t, q, v) ≥ ℓ0I, for some constant ℓ0 > 0,

and to have bounds on the second derivatives, analogous to (H2):

(L2) |∇qqL(t, q, v)| ≤ ℓ1(1 + |v|2), |∇qvL(t, q, v)| ≤ ℓ1(1 + |v|), and |∇vvL(t, q, v)| ≤ ℓ1, for some
constant ℓ1 ≥ 0.

The Hamiltonian function takes the form

H(t, q, p) = max
v∈TqM

(p[v] − L(t, q, v)),

and for each (t, q, p) the above maximum is achieved at a unique point v(t, q, p). The Legendre
transform (t, q, p) 7→ (t, q, v(t, q, p)) establishes a one-to-one correspondence (q, p) 7→ (q, q̇) between
the solutions of the first order Hamiltonian system on T ∗M given by H , and the solutions of the
second order Lagrangian system on M given by L, which can be written in local coordinates as

d

dt
∂vL(t, q(t), q̇(t)) = ∂qL(t, q(t), q̇(t)).

In the latter formulation, the set of 1-periodic solutions - denoted by P(L) - is the set of critical
points of the Lagrangian action functional

E(q) =

∫ 1

0

L(t, q(t), q̇(t)) dt

on the space of smooth loops on M . Developing Morse theory for E is considerably simpler than
developing it for A. Indeed, E is smooth on the Hilbert manifold Λ1(M), the space of loops on
M of Sobolev class W 1,2, satisfies the Palais-Smale condition (as proved by Benci [3]), and is
bounded below. Moreover, classical results by Duistermaat [8] show that the Morse index m(q)
of every q ∈ P(L) coincides with the Conley-Zehnder index µCZ(x) of the corresponding solution
x ∈ P(H) (which is therefore always non-negative in the case of Hamiltonians which are strictly
convex in the p variables). The finiteness of the indices, the Palais-Smale condition, and the lower
bound on E make it possible to apply infinite dimensional Morse theory as developed by Palais
[21]. Actually, it is convenient to use also here the Morse complex approach: if we denote by
CMk(E) the free Abelian group generated by the critical points of E of Morse index k, we obtain
a boundary homomorphism

∂k(E , g) : CMk(E) → CMk−1(E),

3



by introducing a Morse-Smale Riemannian metric g on Λ1(M) and by counting the solutions of
the corresponding negative gradient equation

γ′ = −∇E(γ), (4)

connecting the critical points of Morse index k to those of index k − 1. The fact that this
homomorphism is a boundary operator, and the fact that the homology of the chain complex
{CM∗(E), ∂∗(E , g)} - called the Morse complex of (E , g) - is isomorphic to the singular homology
of Λ1(M), just comes from the fact that {CM∗(E), ∂∗(E , g)} turns out to be the chain complex
associated to a suitable cellular filtration of Λ1(M) (see [1] for a complete exposition). Notice
also that the inclusion Λ1(M) →֒ Λ(M) is a homotopy equivalence, hence the two spaces have
isomorphic singular homology.

The isomorphism between the Floer homology of T ∗M and the singular homology of Λ(M) is
then an immediate consequence of the following stronger result, which is the main theorem of this
paper (see Theorem 3.1 for a more complete and precise statement):

Theorem. There exists a chain-complex isomorphism

Θ : {CM∗(E), ∂∗(E , g)} −→ {CF∗(H), ∂∗(H, J)}.

Let us sketch the idea of the proof. We already know that there is a one-to-one correspondence
between the generators of CMk(E) and those of CFk(H). However this correspondence need
not produce a chain homomorphism. In order to produce such a chain homomorphism, we shall
consider the set of solutions γ(s), s ∈] − ∞, 0], which flow off some q ∈ P(L) by the negative
gradient flow equation (4), and for s = 0 can be lifted to a loop in T ∗M which is the trace at s = 0
of a solution u(s, t), (s, t) ∈ [0,+∞[×T of the Floer equation (1), converging to some x ∈ P(H)
for s→ +∞. In other words, for q ∈ P(L) and x ∈ P(H), we shall consider the set

M+(q, x) = {u : [0,+∞]× T → T ∗M |u solves (1), u(+∞, ·) = x, and τ∗u(0, ·) ∈Wu(q)}.

Here τ∗ : T ∗M → M denotes the standard projection, and Wu(q) ⊂ Λ1(M) is the unstable
manifold of q, that is the set of w ∈ Λ1(M) such that the solution γ(s) of (4) with γ(0) = w
converges to q for s→ −∞. The above problem is a Fredholm one, because the unstable manifold
of q is finite dimensional, and because we are imposing Lagrangian boundary conditions and
non-degenerate asymptotic conditions on the Cauchy-Riemann type equation (1) on [0,+∞[×T.
Indeed, we shall prove that for a generic choice of J , M+(q, x) is a smooth manifold of dimension
m(q) − µCZ(x). In particular when m(q) = µCZ(x) = k, M+(q, x) is a discrete set, and we shall
define the homomorphism

Θk : CMk(E) → CFk(H),

by counting the elements of such sets. A crucial ingredient is of course the compactness of
M+(q, x), which will be a consequence of the following simple but important action estimate:
if x(t) = (q(t), p(t)) is a loop on T ∗M , then

A(x) ≤ E(q), (5)

the equality holding if and only if p is related to q̇ by the Legendre transform. In particular,
A(x) = E(q) holds for x and q corresponding to the same solution. The above estimate guarantees
that if u ∈ M+(q, x) then A(u(s, ·)) ≤ E(q) for every s ≥ 0, the starting point to get compactness.

A standard gluing argument shows that Θ is a chain homomorphism. The fact that Θ is an
isomorphism is again a consequence of (5), together with its differential version

d2A(x)[ζ, ζ] ≤ d2E(q)[Dτ∗(x)ζ,Dτ∗(x)ζ] ∀ζ ∈ C∞(x∗(TT ∗M)), (6)

for every x ∈ P(H) and q ∈ P(L) corresponding to the same periodic solution. Indeed, (5) implies
that M+(q, x) = ∅ if E(q) ≤ A(x), unless q and x correspond to the same periodic solution, in
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which case M+(q, x) consists just of the stationary solution u(s, t) = x(t). Such a solution is a
regular one (in the sense of transversality theory) because of (6). We conclude that, if we order
the generators of CMk(E) and CFk(H) by increasing action, the homomorphism Θk is given by
a square matrix which is lower triangular and has ±1 on each diagonal entry. Hence Θ is an
isomorphism.

Notice that we cannot construct an isomorphism CF∗(H) → CM∗(E) using moduli spaces of
solutions analogue to M+(q, x). Indeed, we would not obtain a Fredholm problem, and we would
not dispose of action estimates guaranteeing the compactness property.

In the proof sketched above, we are coupling Floer theory for A with Morse theory for E on
Λ1(M). We should however stress the fact that it is not essential that on the Morse side we have
a W 1,2 negative gradient flow: another Morse-Smale flow, having E as a Lyapunov function would
suffice. The W 1,2 option is the obvious one, and it makes particularly easy the step from the
Morse complex to the singular homology of the loop space, but one could try other possibilities.
For instance, one may couple Floer theory with the heat flow equation (3), avoiding all the analysis
on the behavior of the solutions of the Floer equation (2) as ǫ tends to 0.

A similar construction works for the fixed ends case: given q0, q1 ∈ M , we look at solutions q
of the Lagrangian system such that q(0) = q0, q(1) = q1. On the Hamiltonian side, this means
that we are looking at solutions x such that x(0) ∈ T ∗

q0
M and x(1) ∈ T ∗

q1
M . The Floer equation

is the same as (1), but this time u is defined on the strip R × [0, 1], with boundary conditions
u(s, 0) ∈ T ∗

q0
M , u(s, 1) ∈ T ∗

q1
M , for every s ∈ R. Again, one finds a Floer complex and a Morse

complex, the latter one being associated to the Lagrangian action functional E on Ω1(M, q0, q1), the
Hilbert manifold of W 1,2 curves [0, 1] →M connecting q0 to q1. Such a manifold is homotopically
equivalent to Ω(M), the based loop space of M , hence we obtain that the Floer homology of the
fixed ends problem is isomorphic to the singular homology of Ω(M).

We wish to emphasize the fact that the assumption that the manifold M should be orientable
is made only to have some technical simplifications - mainly in the choice of suitable preferred
symplectic trivializations of the tangent bundle of T ∗M along the solutions of the Hamiltonian
system - but it could be easily dropped.

In a forthcoming paper we will prove that the isomorphism defined here from the Floer homol-
ogy of T ∗M - in the periodic cases - to the singular homology of the free loop space of M is actually
a ring isomorphism: it relates the pair-of-pants product in Floer homology to the Chas-Sullivan
loop product on the singular homology of Λ(M). In the fixed ends problem, this isomorphism
relates the Y product (the analogue of the pair-of-pants product with strips) in Floer homology
to the classical Pontrjagin product on the singular homology of Ω(M). Related results are proven
by Ralph Cohen [5] and Antonio Ramirez [23].

Acknowledgements. We wish to thank the Max Planck Institute for Mathematics in the Sci-
ences of Leipzig and the Courant Institute of New York, and in particular Tobias Colding and
Helmut Hofer, for their kind hospitality. We are also indebted to Ralph Cohen, Yong-Geun Oh,
Dietmar Salamon, Claude Viterbo, and Joa Weber for many fruitful discussions.
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1 The Floer complex of the Hamiltonian action functional

1.1 Hamiltonian dynamical systems on cotangent bundles

LetM be a connected compact orientable smooth manifold of dimension n. Points in the cotangent
bundle T ∗M will be denoted by (q, p), with q ∈M , p ∈ T ∗

q M , and τ∗ : T ∗M →M will denote the
standard projection. The cotangent bundle T ∗M carries the following canonical structures: the
Liouville 1-form θ and the Liouville vector field η, which are defined by

θ(ζ) = p(Dτ∗(x)[ζ]) = dθ(η, ζ) ∀ζ ∈ TxT
∗M, x = (q, p) ∈ T ∗M,

and the symplectic structure ω = dθ. In local coordinates (q, p) of T ∗M we have

θlocal = p dq, ηlocal = p
∂

∂p
, ωlocal = dp ∧ dq.

The vertical space
T v

xT
∗M = kerDτ∗(x) ∼= T ∗

q M, x = (q, p) ∈ T ∗M,

is a Lagrangian subspace of (TxT
∗M,ωx).

A 1-periodic Hamiltonian H , i.e. a smooth function H : T × T ∗M → R, T = R/Z, determines
a 1-periodic vector field, the Hamiltonian vector field XH defined by

ω(XH(t, x), ζ) = −dH(t, x)[ζ], ∀ζ ∈ TxT
∗M.

In local coordinates, the Hamiltonian equation

ẋ(t) = XH(t, x(t)), (7)

takes the classical physical form {
q̇ = ∂pH(t, q, p),
ṗ = −∂qH(t, q, p).

The integral flow of the vector field XH will be denoted by φt
H . We will be interested in the set

PΛ(H) of 1-periodic solutions of (7), and in the set PΩ(H) of solutions x : [0, 1] → T ∗M of (7)
such that x(0) ∈ T ∗

q0
M and x(1) ∈ T ∗

q1
M , for two fixed points1 q0, q1 ∈M . In each of these cases2

we shall make one of the following non-degeneracy assumptions:

1In this latter case, it is not necessary to assume H to be 1-periodic in time and M to be compact. However we
shall keep these assumptions in order to have a uniform presentation.

2The symbols Λ and Ω will appear as subscripts of many objects we are going to introduce. We will omit such
a subscript whenever we wish to consider both situations at the same time.
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(H0)Λ every solution x ∈ PΛ(H) is non-degenerate, meaning that 1 is not an eigenvalue of
Dφ1

H(x(0)) ∈ GL(Tx(0)T
∗M);

(H0)Ω every solution x ∈ PΩ(H) is non-degenerate, meaning that the image of T v
x(0)T

∗M by

Dφ1
H(x(0)) has intersection (0) with T v

x(1)T
∗M .

The above conditions imply that the set {x(0) | x ∈ P(H)} is discrete in T ∗M .

Remark 1.1 Assumption (H0) holds for a generic choice of H, in several reasonable senses (see
for instance [29, 35]). It is worth remarking that if H satisfies the additional condition

∂ppH(x) ∈ GL(T v
xT

∗M) ∀x ∈ T ∗M,

then H+V satisfies (H0) for a residual set of potentials V ∈ C∞(T×M,R). If moreover ∂ppH > 0,
then H satisfies (H0)Ω for a set of (q0, q1) ∈M ×M having full measure.

1.2 The Maslov index

Let R2n = Rn×Rn be endowed with its standard Euclidean product, with its standard symplectic
structure

ω0 = dp ∧ dq, (q, p) ∈ R
n × R

n,

and with its standard complex structure

J0 =

(
0 I
−I 0

)
,

so that ω0(ζ1, ζ2) = J0ζ1 · ζ2. We denote by Sp(2n) the group of symplectic automorphisms
of (R2n, ω0), by L(n) the space of Lagrangian subspaces of (R2n, ω0), and by λ0 the vertical
Lagrangian subspace λ0 = (0) × Rn.

We recall that the Conley-Zehnder index assigns an integer µCZ(γ) to every path of symplectic
automorphisms γ belonging to the space

{
γ ∈ C0([0, 1], Sp(2n)) | γ(0) = I and 1 is not an eigenvalue of γ(1)

}
. (8)

See [29], section 3. For future reference, we recall that the Conley-Zehnder indices of the paths

γ1, γ2 : [0, 1] → Sp(2), γ1(t) =

(
eαt 0
0 e−αt

)
, with α ∈ R \ {0}, γ2(t) = etθJ0, with θ ∈ R \ 2πZ,

are the integers

µCZ(γ1) = 0, µCZ(γ2) = 2

⌊
θ

2π

⌋
+ 1. (9)

A related notion is the relative Maslov index of a pair of Lagrangian paths, which assigns a half-
integer µ(λ1, λ2) to every pair of continuous paths λ1, λ2 : [0, 1] → L(n). See [24]. For future
reference, we recall that if n = 1 and γ(t) = etθJ0, with θ ∈ R \ πZ, there holds

µ(γλ0, λ0) =
1

2
+

⌊
θ

π

⌋
. (10)

Lemma 1.1 (i) Assume that M is orientable, and let x ∈ PΛ(H). Then the symplectic vector
bundle x∗(TT ∗M) admits a symplectic trivialization

Φ : T × R
2n → x∗(TT ∗M)

such that
Φ(t)λ0 = T v

x(t)T
∗M ∀t ∈ T. (11)

(ii) Let x ∈ PΩ(H). Then the symplectic vector bundle x∗(TT ∗M) admits a symplectic trivializa-
tion

Φ : [0, 1]× R
2n → x∗(TT ∗M)

such that
Φ(t)λ0 = T v

x(t)T
∗M ∀t ∈ [0, 1]. (12)
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Proof. (i) SinceM is orientable, the vector bundle x∗(T vT ∗M) ∼= (τ∗◦x)∗(T ∗M) is orientable,
hence trivial. Let

Ψ : T × R
n → x∗(T vT ∗M)

be a trivialization, and let J be a ω-compatible complex structure on x∗(TT ∗M) (meaning that
ω(·, J ·) is an inner product on x∗(TT ∗M)). Then

Tx(t)T
∗M = J(t)T v

x(t)T
∗M ⊕ T v

x(t)T
∗M,

and the trivialization

Φ : T × R
n ⊕ R

n → x∗(TT ∗M), Φ(t) = (−J(t)Ψ(t)J0) ⊕ Ψ(t),

is symplectic (actually unitary) and maps λ0 into the vertical subbundle.
(ii) Starting from the fact that the vector bundle x∗(T vT ∗M) is trivial because [0, 1] is con-

tractible, the construction is identical to the one shown in (i).
Let x ∈ PΛ(H). We can use the symplectic trivialization Φ provided by the above lemma to

transform the differential of the Hamiltonian flow along x into a path in Sp(2n),

γΦ(t) = Φ(t)−1Dφt
H(x(0))Φ(0),

which belongs to the space (8), thanks to (H0)Λ.
Similarly if x ∈ PΩ(H), the symplectic trivialization Φ provided by the above lemma produces

the path in L(n),
λΦ(t) = Φ(t)−1Dφt

H(x(0))[T v
x(0)T

∗M ]

such that λΦ(0) = λ0 and λΦ(1) ∩ λ0 = (0), thanks to (H0)Ω.
Denote by Sp(2n, λ0) the subgroup of the symplectic group consisting of those automorphisms

which preserve the vertical Lagrangian subspace λ0:

Sp(2n, λ0) := {A ∈ Sp(2n) | Aλ0 = λ0} =

{(
A1 0
A2 A3

)
| A∗

1A3 = I, A∗
1A2 = A∗

2A1

}
.

It is easily seen that Sp(2n, λ0) is continuously retractable onto its closed subgroup

Sp(2n, λ0) ∩ U(n) =

{(
R 0
0 R∗

)
| R ∈ O(n)

}
,

on which the determinant map det : U(n) → S1 takes the values ±1. It follows that Sp(2n, λ0)
and Sp(2n, λ0) ∩ U(n) have two connected components, and that the inclusions

Sp(2n, λ0) →֒ Sp(2n), Sp(2n, λ0) ∩ U(n) →֒ U(n),

induce the zero homomorphism between fundamental groups.

Lemma 1.2 (i) If x ∈ PΛ(H), the Conley-Zehnder µCZ(γΦ) does not depend on the symplectic
trivialization Φ satisfying (11).

(ii) If x ∈ PΩ(H), the relative Maslov index µ(λΦ, λ0) does not depend on the symplectic
trivialization Φ satisfying (12).

Proof. Let x ∈ PΛ(H) and let Φ,Ψ be two symplectic trivializations satisfying (11). Then

γΨ(t) = α(t)γΦ(t)α(0)−1,

for some
α : T → Sp(2n, λ0).

Since the inclusion Sp(2n, λ0) →֒ Sp(2n) induces the zero homomorphism between fundamental
groups, α(0)γΦα(0)−1 and γΨ are homotopic by a homotopy which fixes the end-points. The ho-
motopy and the naturality property of the Conley-Zehnder index imply that µCZ(γΦ) = µCZ(γΨ).
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Now let x ∈ PΩ(H) and let Φ,Ψ be two symplectic trivializations satisfying (12). Then

λΨ(t) = α(t)λΦ(t),

for some α : [0, 1] → Sp(2n, λ0), and by the naturality of the relative Maslov index,

µ(λΦ, λ0) = µ(αλΦ, αλ0) = µ(λΨ, λ0).

The above lemma allows us to give the following:

Definition 1.1 The Maslov index of a periodic solution x ∈ PΛ(H) is the integer µΛ(x) :=
µCZ(γΦ), where Φ is a symplectic trivialization of x∗(TT ∗M) satisfying (11).
The Maslov index of a solution x ∈ PΩ(H) is the integer µΩ(x) := µ(λΦ, λ0) − n/2, where Φ is a
symplectic trivialization of x∗(TT ∗M) satisfying (12).

Indeed, since λΦ(0)λ0 = λ0 and λΦ(1) ∩ λ0 = (0), the number µ(λΦ, λ0) − n/2 is an integer
(see [24], Corollary 4.12).

Remark 1.2 The sign of the symplectic form and the n/2-shift have been chosen in order for
the above Maslov indices to coincide with the Morse indices of corresponding critical points of the
Lagrangian action functional (see Theorem 2.1). Notice that in the case of a contractible periodic
orbit x ∈ PΛ(H), if x : D → T ∗M is an extension of x to the disc D, there are symplectic
trivializations of x∗(TT ∗M) satisfying (11), so µΛ(x) coincides with the Conley-Zehnder index in
standard Floer theory for contractible periodic orbits.

Remark 1.3 It is actually possible to drop the assumption on the orientability of M also in the
case of periodic solutions. In the non-orientable case indeed, one can still single out a special class
of symplectic trivializations for which the Conley-Zehnder index coincides with the Morse index of
the Lagrangian action functional (see [35]). For sake of simplicity, in this paper we deal only with
the orientable case.

1.3 The L2-gradient of the Hamiltonian action functional

Denote by Λ1(T ∗M) the space of all loops x : T → T ∗M of Sobolev class W 1,2, and denote
by Ω1(T ∗M, q0, q1) the space of all paths x : [0, 1] → T ∗M of Sobolev class W 1,2 such that
x(0) ∈ T ∗

q0
M and x(1) ∈ T ∗

q1
M . These spaces have canonical Hilbert manifold structures. The

action functional

A(x) = AH(x) :=

∫
x∗(θ −Hdt) =

∫ 1

0

(θ(ẋ) −H(t, x)) dt

is smooth on Λ1(T ∗M) and on Ω1(T ∗M, q0, q1). The differential of A on both manifolds takes the
form

dA(x)[ζ] =

∫ 1

0

(ω(ζ, ẋ) − dH(t, x)[ζ]) dt =

∫ 1

0

ω(ζ, ẋ−XH(t, x)) dt, (13)

so the critical points of A|Λ1 are the elements of PΛ(H), while the critical points of A|Ω1 are the
elements of PΩ(H). However, variational methods using the gradient flow of A with respect to
some metric compatible with the W 1,2 topology are not suitable for classifying the critical points
of A, because the Morse index of every critical point is infinite, and because of lack of compactness
(the Palais-Smale condition would not hold, but see [12] for a possible approach in this direction).
It was Floer’s idea to overcome these difficulties by studying the L2-gradient equation for A. More
precisely, let J be a smooth almost complex structure on T ∗M , 1-periodic in the time variable t,
and compatible with ω, meaning that

〈ζ1, ζ2〉Jt := ω(ζ1, J(t, x)ζ2), ζ1, ζ2 ∈ TxT
∗M, x ∈ T ∗M,
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is a loop of Riemannian metrics on T ∗M . We can rewrite (13) as

dA(x)[ζ] =

∫ 1

0

〈ζ,−J(t, x)(ẋ −XH(t, x)〉Jt dt,

and we will denote by ∇JA the gradient of A with respect to the L2 inner product given by the
periodic metric 〈·, ·〉Jt , namely

∇JA(x) = −J(t, x)(ẋ −XH(t, x)).

We will be interested in the negative gradient equation, that is in the Cauchy-Riemann type PDE

∂su− J(t, u)(∂tu−XH(t, u)) = 0, (14)

where

u ∈ C∞(R × T, T ∗M) in the Λ case,

u ∈ C∞(R × [0, 1], T ∗M), u(R × {0}) ⊂ T ∗
q0
M, u(R × {1}) ⊂ T ∗

q1
M, in the Ω case.

(15)

Given x−, x+ ∈ P(H), we will denote by M(x−, x+) = M(x−, x+;H, J) the set of all solutions of
(14,15) such that

lim
s→±∞

u(s, t) = x±(t) uniformly in t.

As usual, we shall add the subscript Λ or Ω when we wish to distinguish between the periodic and
the fixed-ends problem. The elements of P(H) are the stationary solutions of (14,15), and A is
strictly decreasing on all the other solutions. So M(x, x) contains only the element x, and

M(x−, x+) = ∅ if A(x−) ≤ A(x+) and x− 6= x+. (16)

Clearly, MΛ(x−, x+) 6= ∅ implies that the loops x− and x+ are homotopic, which is equivalent to
saying that their projections ontoM , τ∗◦x− and τ∗◦x+, are homotopic. Similarly, MΩ(x−, x+) 6=
∅ implies that the paths x− and x+ are homotopic within the space of paths having end-points on
T ∗

q0
M and on T ∗

q1
M , which is equivalent to saying that their projections onto M are homotopic

with fixed end-points.
We conclude this section by describing the standard functional setting which allows to see

M(x−, x+) as the set of zeros of a smooth section of a Banach bundle. Let us fix a number r > 2,
and recall that the maps on two-dimensional domains of Sobolev classW 1,r are Hölder continuous.
Fix two solutions x−, x+ ∈ P(H), which are homotopic in the sense explained above.

In the Λ case, we define BΛ = BΛ(x−, x+) as the set of all maps u : R × T → T ∗M of Sobolev
class W 1,r

loc such that there is s0 ≥ 0 for which

u(s, t) =

{
expx−(t)(ζ

−(s, t)) ∀s ≤ −s0,
expx+(t)(ζ

+(s, t)) ∀s ≥ s0,
(17)

where ζ− and ζ+ areW 1,r sections of the bundles x−
∗
(TT ∗M) →]−∞,−s0[×T and x+∗

(TT ∗M) →
]s0,+∞[×T, respectively. Here exp denotes the exponential map with respect to some metric on
T ∗M , and the space of W 1,r sections is also defined in terms of this metric. Then BΛ can be given
the structure of a smooth Banach manifold, and the tangent space at u ∈ BΛ is identified with
the space of W 1,r sections of u∗(TT ∗M).

Similarly, BΩ = BΩ(x−, x+) will be the Banach manifold of all maps u : R×[0, 1] → T ∗M which
are of Sobolev class W 1,r on every compact subset of R × [0, 1], such that u(R × {0}) ⊂ T ∗

q0
M ,

u(R × {1}) ⊂ T ∗
q1
M , and such that there is s0 ≥ 0 for which (17) holds, ζ− and ζ+ being W 1,r

sections of x−
∗
(TT ∗M) →] −∞,−s0[×[0, 1] and x+∗

(TT ∗M) →]s0,+∞[×[0, 1], respectively.
Denote by WΛ = WΛ(x−, x+) (resp. WΩ = WΩ(x−, x+)) the Banach bundle over BΛ (resp.

BΩ) whose fiber Wu at u is the space of Lr sections of u∗(TT ∗M). Then M(x−, x+) is the set of
zeros of the smooth section

∂J,H : B → W , u 7→ ∂su+ ∇JA(u) = ∂su− J(t, u)(∂tu−XH(t, u)).
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Indeed, standard elliptic regularity results imply that the zeros of the above section are smooth
maps. Moreover, the non-degeneracy assumption (H0) guarantees that u(s, t) → x±(t) and
∂su(s, t) → 0 for s→ ±∞ exponentially fast, uniformly in t (see e.g. [31, 27]).

Denote by R the extended real line R ∪ {−∞,+∞}, with the differentiable structure induced
by the bijection [−π/2, π/2] → R, s 7→ tan s for s ∈] − π/2, π/2[, ±π/2 7→ ±∞. A map u ∈
MΛ(x−, x+) (resp. u ∈ MΩ(x−, x+)) extends to a smooth map on R ×T (resp. R× [0, 1]), which
we shall also denote by u.

Lemma 1.3 (i) Let u ∈ MΛ(x−, x+), and let

Φ± : T × R
2n → x±

∗
(TT ∗M)

be two unitary trivializations such that Φ±(t)λ0 = T v
x±(t)T

∗M for every t ∈ T. Then there exists
a smooth unitary trivialization

Φ : R × T × R
2n → u∗(TT ∗M)

such that Φ(±∞, t) = Φ±(t) for every t ∈ T.
(ii) Let u ∈ MΩ(x−, x+), and let

Φ± : [0, 1]× R
2n → x±

∗
(TT ∗M)

be two unitary trivializations such that Φ±(t)λ0 = T v
x±(t)T

∗M for every t ∈ [0, 1], and such that
the isomorphisms

Φ±(t)|λ0 : λ0 → T v
x±(t)T

∗M ∼= T ∗
τ∗◦x±(t)M

are orientation preserving. Then there exists a smooth unitary trivialization

Φ : R × [0, 1] × R
2n → u∗(TT ∗M)

such that Φ(s, t)λ0 = T v
u(s,t)T

∗M for every (s, t) ∈ R × [0, 1], and Φ(±∞, t) = Φ±(t) for every

t ∈ [0, 1].

Proof. (i) By the same construction used in the proof of Lemma 1.1, we can find a smooth
unitary trivialization

Ψ : R × T × R
2n → u∗(TT ∗M)

such that Ψ(s, t)λ0 = T v
u(s,t)T

∗M . Consider the loops in Sp(2n, λ0) ∩ U(n)

α±(t) := Ψ(±∞, t)−1Φ±(t).

Since the inclusion Sp(2n, λ0) ∩ U(n) →֒ U(n) induces the zero homomorphism between funda-
mental groups, and since U(n) is connected, we can find a homotopy

α : R × T → U(n)

such that α(±∞, t) = α±(t) for every t ∈ T. Then the unitary trivialization

Φ(s, t) := Ψ(s, t)α(s, t), (s, t) ∈ R × T,

has the required asymptotics.
(ii) By the same construction used in the proof of Lemma 1.1, we can find a smooth unitary

trivialization
Ψ : R × [0, 1]× R

2n → u∗(TT ∗M)

such that Ψ(s, t)λ0 = T v
u(s,t)T

∗M . Since the isomorphisms Φ±(t)|λ0 are both orientation preserv-
ing, the paths

α± : [0, 1] → Sp(2n, λ0) ∩ U(n), α±(t) := Ψ(±∞, t)−1Φ±(t),
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take values into the same connected component of Sp(2n, λ0) ∩ U(n). Therefore we can find a
homotopy

α : R × [0, 1] → Sp(2n, λ0) ∩ U(n)

such that α(±∞, t) = α±(t) for every t ∈ [0, 1]. Then the unitary trivialization

Φ(s, t) := Ψ(s, t)α(s, t), (s, t) ∈ R × [0, 1],

maps λ0 into the vertical subbundle, and has the required asymptotics.
We denote byW 1,r

λ0
the Sobolev space of R2n-valued maps v taking values in λ0 on the boundary:

W 1,r
λ0

(R×]0, 1[,R2n) := W 1,r
0 (R×]0, 1[,Rn) ×W 1,r(R×]0, 1[,Rn).

Let u ∈ MΛ(x−, x+) (resp. u ∈ MΩ(x−, x+)), and let Φ be a trivialization of the bundle
u∗(TT ∗M) as in the lemma above. Then Φ defines a conjugacy between the fiberwise deriva-
tive of the section ∂J,H at u,

Df∂J,H(u) : TuB → Wu,

and a bounded operator

DS,Λ : W 1,r(R × T,R2n) → Lr(R × T,R2n)
(
resp. DS,Ω : W 1,r

λ0
(R×]0, 1[,R2n) → Lr(R×]0, 1[,R2n)

)

of the form
DSv = ∂sv − J0∂tv − S(s, t)v.

Here S is a smooth family of endomorphisms of R2n - 1-periodic in t in the Λ case - such that the
limits

S±(t) = lim
s→±∞

S(s, t)

are symmetric. Moreover, the solution of

d

dt
γ±(t) = J0S

±(t)γ±(t), γ±(0) = I,

is easily seen to be
γ±(t) = Φ(±∞, t)−1Dφt

H(x±(0))Φ(±∞, 0).

Finally, the requirements of Lemma 1.3 guarantee that Φ(±∞, ·) are symplectic trivializations of
x±

∗
(TT ∗M) satisfying (11) (resp. (12)). The following theorem is then an immediate consequence

of Theorem 7.42 and Remarks 7.44, 7.46 in [25] (together with the estimates of Lemma 2.4 in [27]
to deal with the case r > 2, see also [31]):

Theorem 1.4 If x−, x+ ∈ PΛ(H) and u ∈ MΛ(x−, x+), the fiberwise derivative of ∂J,H at u is a
Fredholm operator of index

indDf∂J,H(u) = µΛ(x−) − µΛ(x+).

If x−, x+ ∈ PΩ(H) and u ∈ MΩ(x−, x+), the fiberwise derivative of ∂J,H at u is a Fredholm
operator of index

indDf∂J,H(u) = µΩ(x−) − µΩ(x+).
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1.4 Coherent orientations

The aim of this section is to show how the manifolds M(x−, x+) can be oriented in a way which is
coherent with gluing. The construction is a particular case of the procedure described in [10] for
an arbitrary symplectic manifold. However, since the fact that we are dealing with the cotangent
bundle of an oriented manifold allows some slight simplifications, we carry out the construction
explicitly.

If E and F are real Banach spaces, Fred(E,F ) will denote the space of Fredholm linear oper-
ators from E to F , endowed with the operator norm topology. It is a Banach manifold, being an
open subset of the Banach space of all linear continuous operators from E to F . The manifold
Fred(E,F ) is the base space of a smooth real line bundle, the determinant bundle Det(Fred(E,F )),
with fibers

Det(A) := Λmax(kerA) ⊗ (Λmax(cokerA))∗, ∀A ∈ Fred(E,F ),

where Λmax(V ) denotes the exterior algebra of top degree of the real finite dimensional vector
space V . See [22] for the construction of the smooth bundle structure3 of Det(Fred(E,F )). Two
isomorphisms Φ : E ∼= E′ and Ψ : F ∼= F ′ induce a canonical smooth line bundle isomorphism
Det(E,F ) ∼= Det(E′, F ′) lifting the diffeomorphism Fred(E,F ) → Fred(E′, F ′), A 7→ ΨAΦ−1. If
E0 ⊂ E is a closed finite codimensional linear subspace and A ∈ Fred(E,F ), the restriction A|E0

belongs to Fred(E0, F ), and the exact sequence

0 → kerA|E0 → kerA→ E/E0
A→ F/A(E0) = cokerA|E0 → F/A(E) = cokerA→ 0

determines a canonical isomorphism (see Lemma 18 in [10])

Det(A) ∼= Det(A|E0) ⊗ Λmax(E/E0). (18)

Fix some r > 1. Let ΣΛ be the set of operators

DS,Λ : W 1,r(R × T,R2n) → Lr(R × T,R2n)

of the form
v 7→ ∂sv − J0∂tv − S(s, t)v, (19)

with S ∈ C0(R × T, gl(2n)) such that S(±∞, t) are symmetric for every t ∈ T, and the paths of
symplectic matrices γ−S and γ+

S solving

d

dt
γ±S (t) = J0S(±∞, t)γ±S (t), γ±S (0) = I,

satisfy
1 /∈ σ(γ±S (1)). (20)

Then DS,Λ is a Fredholm operator of index

indDS,Λ = µCZ(γ−S ) − µCZ(γ+
S ).

Similarly, ΣΩ will denote the set of operators

DS,Ω : W 1,r
λ0

(R×]0, 1[,R2n) → Lr(R×]0, 1[,R2n),

of the form (19), where S ∈ C0(R × [0, 1], gl(2n)), S(±∞, t) symmetric, is such that the paths of
symplectic matrices γ−S and γ+

S satisfy

γ±S (1)λ0 ∩ λ0 = (0). (21)

3Actually, in [22] the dual of this object is considered. The convention we use here is more common in symplectic
geometry.
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They are Fredholm operators of index

indDS,Ω = µ(γ−S (·)λ0, λ0) − µ(γ+
S (·)λ0, λ0).

The paths of symmetric matrices S(±∞, ·) satisfying (20) (resp. (21)) will be called simply non-
degenerate paths. As usual, we shall omit the subscript Λ or Ω when we wish to consider both
situations at the same time.

The determinant bundle over Fred(W 1,r, Lr) restricts to a line bundle over Σ, which is non-
trivial on some connected components of Σ. Actually, the determinant bundle may be non-trivial
on such simple sets as {

A−1DSA | A ∈ Sp(2n, λ0) ∩ U(n)
}
,

for a fixed DS ∈ Σ. Indeed, if n is even we can find a path α : [0, 1] → Sp(2n, λ0) ∩ U(n) such
that α(0) = I and α(1) = −I, and it is easy to show (see Theorem 2 of [10]) that the restriction
of the determinant bundle to the loop

{
α(λ)−1DS,Λα(λ) | λ ∈ [0, 1]

}

is trivial if and only if indDS,Λ is even.
However, the determinant bundle becomes trivial when we fix the asymptotics: if S+ and

S− ∈ C0(T, Sym(2n)) (resp. C0([0, 1], Sym(2n))) are non-degenerate paths, we can consider the
subset of Σ,

Σ(S−, S+) :=
{
DS ∈ Σ | S(±∞, t) = S±(t)

}
,

consisting of those operators having fixed asymptotics. The set Σ(S−, S+) is contractible ([10],
Proposition 7), so the determinant bundle restricts to a trivial bundle on it, which we denote by
Det(Σ(S−, S+)).

Two orientations o(S1, S2) and o(S2, S3) of Det(Σ(S1, S2)) and Det(Σ(S2, S3)), respectively,
induce in a canonical way an orientation

o(S1, S2)# o(S2, S3)

of Det(Σ(S1, S3)) (see [10], section 3). Such an orientation is associative, meaning that

(o(S1, S2)# o(S2, S3))# o(S3, S4) = o(S1, S2)# (o(S2, S3)# o(S3, S4)).

A coherent orientation for Σ is a set of orientations o(S−, S+) of Det(Σ(S−, S+)) for each pair
(S−, S+) of non-degenerate paths, such that

o(S1, S3) = o(S1, S2)# o(S2, S3), (22)

for each triplet (S1, S2, S3) of non-degenerate paths. The existence of coherent orientations for ΣΛ

is established in [10], Theorem 12. The construction for ΣΩ is identical.
Let us fix unitary trivializations Φx of x∗(TT ∗M) satisfying Φx(t)λ0 = T v

x(t)T
∗M , for each x ∈

P(H). In the Ω case we also require the isomorphisms Φx(t)|λ0 to be orientation preserving. Cor-
respondingly, we obtain the non-degenerate path Sx ∈ C0(T, Sym(2n)) (resp. C0([0, 1], Sym(2n)))
such that

γSx(t) = Φx(t)−1Dφt
H(x(0))Φx(0).

Let us fix also a coherent orientation for Σ. We shall see that these data determine an orientation
of

Det(Df∂J,H(u)),

the determinant of the fiberwise derivative of the section

∂J,H : B(x−, x+) → W(x−, x+) (23)

at every u ∈ M(x−, x+), for every pair x−, x+ ∈ P(H).
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Let x−, x+ ∈ P(H) and let u ∈ M(x−, x+). By Lemma 1.3, we can find a smooth unitary
trivialization Φu of u∗(TT ∗M) agreeing with Φx− and Φx+ for s = −∞ and s = +∞, respectively.
In the Ω case we also require that Φu(s, t)λ0 = T v

u(s,t)T
∗M for every (s, t) ∈ R × [0, 1]. Then

Df∂J,H(u) is conjugated by Φu to an operator DS belonging to Σ(Sx− , Sx+). So we have a
canonical isomorphism

Det(Df∂J,H(u)) ∼= Det(DS),

and Det(Df∂J,H(u)) inherits an orientation from o(Sx− , Sx+).
Changing the trivialization Φu by another one with the same properties changes DS by a

unitary conjugacy ΨDSΨ−1, where Ψ ∈ C0(R×T, U(n)) (resp. C0(R × [0, 1], Sp(2n, λ0) ∩U(n)))
is the identity for s = ±∞, so Lemma 13 in [10] implies that the orientation of Det(Df∂J,H(u))
does not depend on the choice of Φu.

Such an orientation varies continuously with u, so if the section (23) is transverse to the zero
section, M(x−x+) is a finite dimensional manifold and

Λmax(TuM(x−, x+)) = Λmax(kerDf∂J,H(u)) = Det(Df∂J,H(u)) ⊗ R

is oriented, meaning that M(x−, x+) is oriented.
In particular when µ(x−) − µ(x+) = 1, M(x−, x+) is an oriented one-dimensional manifold.

Since translation of the s variable defines a free R action on it, M(x−, x+) consists of lines.
Denoting by [u] the equivalence class of u in the zero-dimensional manifold M(x−, x+)/R, we
define

ǫ([u]) ∈ {−1,+1}
to be +1 if the R-action is orientation preserving on the connected component of M(x−, x+)
containing u, −1 in the opposite case.

Remark 1.4 In our construction, the orientations of moduli spaces of solutions of the Floer equa-
tion depend on the choice of suitable trivializations of x∗(TT ∗M), for every x ∈ P(H), and of
a coherent orientation for Σ. This approach is possible because here we can find trivializations
of u∗(TT ∗M) with prescribed asymptotics, something which is not possible for an arbitrary sym-
plectic manifold. So here we do not need to introduce the notion of a coherent orientation for
the symplectic vector bundle TT ∗M → T ∗M , as in [10]. The use of a coherent orientation for
TT ∗M → T ∗M would allow to drop the orientability assumption on M .

1.5 L∞ estimates

In order to have L∞ bounds on the set of solutions of (14,15) with bounded action, further
assumptions on the Hamiltonian H and on the almost complex structure J are needed. Let us
fix a metric 〈·, ·〉 on M . We shall denote by the same symbol the induced metric on TM and
on T ∗M , and by ∇ the corresponding Levi-Civita covariant derivation. All the Lr and Sobolev
norms we will use refer to this metric. This metric determines an isometry TM → T ∗M , and
a direct summand of the vertical bundle T vT ∗M , the horizontal bundle T hT ∗M , together with
isomorphisms

TxT
∗M = T h

x T
∗M ⊕ T v

xT
∗M ∼= TqM ⊕ T ∗

q M
∼= TqM ⊕ TqM, x = (q, p) ∈ T ∗M.

There is a preferred ω-compatible almost complex structure Ĵ on T ∗M , which in the above splitting
has the form

Ĵ =

(
0 I
−I 0

)
.

The Liouville and the Hamiltonian vector field can be written as

η(q, p) = (0, p), XH(t, q, p) = Ĵ∇H(t, q, p) = (∇pH(t, q, p),−∇qH(t, q, p)),

where ∇q and ∇p denote the horizontal and the vertical components of the gradient. We shall
make the following assumptions (recall that η denotes the Liouville vector field on T ∗M):
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(H1) there exist h0 > 0 and h1 ≥ 0 such that

dH(t, q, p)[η] −H(t, q, p) ≥ h0|p|2 − h1,

for every (t, q, p) ∈ T × T ∗M ;

(H2) there exists h2 ≥ 0 such that

|∇qH(t, q, p)| ≤ h2(1 + |p|2), |∇pH(t, q, p)| ≤ h2(1 + |p|),

for every (t, q, p) ∈ T × T ∗M .

Condition (H1) is assumed also in [4], and it is a condition of quadratic growth at infinity:
thanks to the compactness of M , it easily implies the estimate

H(t, q, p) ≥ 1

2
h0|p|2 − h3,

for a suitable constant h3. Condition (H1) does not depend on the choice of the metric on M : if
〈·, ·〉∗ is another metric, by the compactness of M |ξ| ≤ c|ξ|∗, so if H satisfies (H1) with respect to
| · | with constants h0, h1, it also satisfies (H1) with respect to | · |∗ with constants h0/c

2 and h1.
We will show that also (H2) does not depend on the metric, by checking that H satisfies (H2)

if and only if for any coordinate system (q1, . . . , qn) ∈ R
n on U ⊂ M - inducing the coordinate

system (q1, . . . , qn, p1, . . . , pn) ∈ Rn × Rn∗ on T ∗U ⊂ T ∗M - there is a ≥ 0 such that

|∂qiH(t, q, p)| ≤ a(1 + |p|2), |∂piH(t, q, p)| ≤ a(1 + |p|), ∀i = 1. . . . , n. (24)

Here | · | denotes any norm, for instance the Euclidean one, on Rn∗. It is readily seen that if (24)
holds forH and ψ is a change of coordinates on Rn, then (24) holds forH(t, ψ(q), p◦Dψ(q)−1) (with
a different constant a), hence this local condition is independent of the choice of the coordinate
system.

Let K : TT ∗M → T ∗M be the connection associated to the metric 〈·, ·〉. Then the horizontal
and vertical components of the gradient of H are

∇qH = Dτ∗∇H, ∇pH = K∇H. (25)

In the coordinate system (q1, . . . , qn, p1, . . . pn) the connection K has the form

K(ξ, ζ) = ζ −Bξ, (ξ, ζ) ∈ R
n × R

n∗, (26)

where B = B(q, p) ∈ Hom(Rn,Rn∗) is symmetric and depends linearly on p. If the symmetric
operator G(q) ∈ Hom(Rn,Rn∗) represents the metric on M in the local coordinates (q1, . . . , qn),
the induced metric on T ∗M has the local expression

〈(ξ1, ζ1), (ξ2, ζ2)〉 = (Gξ1)ξ2 + (ζ1 −Bξ1)(G
−1(ζ2 −Bξ2)),

which can be rewritten in matrix form as

G̃ =

(
G+BG−1B −BG−1

−G−1B G−1

)
. (27)

The inverse of this matrix is

G̃−1 =

(
G−1 G−1B
BG−1 G+BG−1B

)
. (28)

Since the local expression of the gradient of H is ∇H = G̃−1∂H , by (25), (26), (27), (28),

{
∇qH = G−1∂qH +G−1B∂pH,
∇pH = G∂pH,

{
∂qH = G∇qH −BG−1∇pH,
∂pH = G−1∇pH.
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Since M is compact and B depends linearly on p, the above formulas show the equivalence of (H2)
and (24).

Condition (H2) is weaker than the corresponding growth condition appearing in [4]. Physical
Hamiltonians of the form

H(t, q, p) =
1

2
|T (t, q)p−A(t, q)|2 + V (t, q)

satisfy (H1) and (H2), provided that the symmetric tensor T ∗T is everywhere positive. Condition
(H2) implies the estimate

|XH(t, q, p)| = |∇H(t, q, p)| ≤ h4(1 + |p|2), (29)

for a suitable constant h4. Here is a first important consequence of assumptions (H1) and (H2):

Lemma 1.5 Assume that H satisfies (H0), (H1), and (H2). Then for every a ∈ R, the set of
solutions x ∈ P(H) such that A(x) ≤ a is finite.

Proof. Let x = (q, p) ∈ P(H) be such that A(x) ≤ a. Then by (H1),

a ≥ A(x) =

∫ 1

0

(θ(ẋ) −H(t, x)) dt =

∫ 1

0

(dθ(η,XH(t, x)) −H(t, x)) dt

=

∫ 1

0

(dH(t, q, p)[η] −H(t, q, p)) dt ≥ h0‖p‖2
L2 − h1,

so P(H) ∩ {A ≤ a} is bounded in L2. By (29) we also have

|ẋ| = |XH(t, x)| ≤ h4(1 + |p|2),

from which we conclude that P(H) ∩ {A ≤ a} is bounded in W 1,1, hence in L∞. In particular,
the set {x(0) | x ∈ P(H), A(x) ≤ a} is pre-compact in T ∗M , and being discrete by (H0), it must
be finite.

We shall prove that if H satisfies (H1), (H2), and J is close to Ĵ , then the solutions of (14,15)
with bounded action are uniformly bounded in L∞. We shall need the following interpolation
inequality:

Lemma 1.6 There exists C > 0 such that

‖ϕ‖4
L4(R×]0,1[) ≤ C‖ϕ‖2

L2(R×]0,1[)‖ϕ‖2
W 1,2(R×]0,1[)

for every ϕ ∈W 1,2(R×]0, 1[).

Proof. This is an easy consequence of the interpolation inequality

‖ψ‖4
L4(R2) ≤ C0‖ψ‖2

L2(R2)‖∇ψ‖2
L2(R2) ∀ψ ∈ W 1,2(R2), (30)

proved in [16], section 1.4.7. Indeed, if ϕ ∈ W 1,2(R×]0, 1[), by reflection along the lines R × {0},
and R × {1} we obtain a function ϕ̃ ∈ W 1,2(R×] − 1, 2[) such that

‖ϕ̃‖2
L2(R×]−1,2[) = 3‖ϕ‖2

L2(R×]0,1[), ‖∇ϕ̃‖2
L2(R×]−1,2[) = 3‖∇ϕ‖2

L2(R×]0,1[).

Let χ ∈ C∞(R) be a function such that χ = 1 on [0, 1], suppχ ⊂]− 1, 2[, 0 ≤ χ ≤ 1, and |χ′| ≤ 2.
Then the function ψ(s, t) = χ(t)ϕ̃(s, t) belongs to W 1,2(R2), so (30) leads to

‖ϕ‖4
L4(R×]0,1[) ≤ ‖ψ‖4

L4(R2) ≤ C0‖ψ‖2
L2(R2)‖∇ψ‖2

L2(R2),

and the conclusion follows from the inequalities

‖ψ‖L2(R2) ≤ ‖ϕ̃‖L2(R×]−1,2[) =
√

3‖ϕ‖L2(R×]0,1[),
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and

‖∇ψ‖L2(R2) = ‖χ∇ϕ̃+ χ′ϕ̃‖L2(R×]−1,2[) ≤ ‖∇ϕ̃‖L2(R×]−1,2[) + 2‖ϕ̃‖L2(R×]−1,2[)

=
√

3‖∇ϕ‖L2(R×]0,1[) + 2
√

3‖ϕ‖L2(R×]0,1[).

The main step to prove the L∞ estimates is provided by the following:

Lemma 1.7 Assume that H satisfies (H1), (H2), and that the t-dependent 1-periodic almost com-
plex structure J on T ∗M satisfies ‖J‖∞ < +∞. For every pair of real numbers a1, a2 there
exists a number c such that for every u = (q, p) ∈ C∞(R × [0, 1], T ∗M) (resp. u = (q, p) ∈
C∞(]0,+∞[×[0, 1], T ∗M) ∩W 1,r(]0, 1[×]0, 1[, T ∗M), with r > 2) solving

∂su− J(t, u)(∂tu−XH(t, u)) = 0, (31)

and such that a1 ≤ A(u(s, ·)) ≤ a2 for every s ∈ R (resp. s ∈ [0,+∞[), there holds

‖p‖L2(I×]0,1[) ≤ c|I| 12 , ‖∇p‖L2(I×]0,1[) ≤ c(|I| 12 + 1),

for every interval I ⊂ R (resp. I ⊂ [0,+∞[).

Proof. We shall denote by U the set of solutions u ∈ C∞(R × [0, 1], T ∗M) (respectively
u ∈ C∞(]0,+∞[×[0, 1], T ∗M) ∩W 1,r(]0, 1[×]0, 1[, T ∗M)) of (31) such that a1 ≤ A(u(s, ·)) ≤ a2

for every s ∈ R (resp. s ∈ [0,+∞[). Notice that in the case of u defined on the half-strip, our
assumptions imply that u(0, ·) ∈ W 1−1/r,r(]0, 1[, T ∗M) (see [2] section 7.56), from which it easily
follows that the function s 7→ A(u(s, ·)) is continuous on [0,+∞[.

Claim 1. There exists c1 such that for every u ∈ U ,

‖∂su‖L2(R×]0,1[) ≤ c1 (resp. ‖∂su‖L2(]0,+∞[×]0,1[) ≤ c1).

Indeed, for s0 < s1,

‖∂su‖2
L2(]s0,s1[×]0,1[) =

∫ s1

s0

∫ 1

0

|∂su|2 dt ds ≤ ‖J−1‖2
∞

∫ s1

s0

∫ 1

0

|∂su|2Jt
dt ds

= ‖ − J‖2
∞

∫ s1

s0

∫ 1

0

〈−∇JA(u(s, ·))(t), ∂su(s, t)〉Jt dt ds = −‖J‖2
∞

∫ s1

s0

dA(u(s, ·))[∂su(s, ·)] ds

= ‖J‖2
∞(A(u(s0, ·)) −A(u(s1, ·))) ≤ ‖J‖2

∞(a2 − a1).

Claim 2. There exists c2 such that ‖p(s, ·)‖L2(]0,1[) ≤ c2(1 + ‖∂su(s, ·)‖L2(]0,1[)) for every
u = (q, p) ∈ U and every s ∈ R (resp. s ∈ [0,+∞[).

Indeed, since u solves (31),

θ(∂tu) = θ(XH(t, u) − J(t, u)∂su) = ω(η(u), XH(t, u) − J(t, u)∂su)

= dH(t, u)[η(u)] − 〈Ĵ(u)η(u), J(t, u)∂su〉.

Then by (H1) and by the fact that |η(q, p)| = |p|,

θ(∂tu) −H(t, u) ≥ h0|p|2 − h1 − ‖J‖∞|p| |∂su|,

and integrating over [0, 1] we find

a2 ≥ A(u(s, ·)) =

∫ 1

0

(θ(∂tu(s, t)) −H(t, u(s, t))) dt

≥ h0‖p(s, ·)‖2
L2(]0,1[) − h1 − ‖J‖∞‖p(s, ·)‖L2(]0,1[)‖∂su(s, ·)‖L2(]0,1[),
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which implies Claim 2.

Claim 3. There exists c3 such that ‖p(s, ·)‖L∞(]0,1[) ≤ c3(1 + ‖∂su(s, ·)‖2
L2(]0,1[)) for every

u = (q, p) ∈ U and every s ∈ R (resp. s ∈ [0,+∞[).

Indeed, by (29),

‖∂tp(s, ·)‖L1(]0,1[) ≤ ‖∂tu(s, ·)‖L1(]0,1[) ≤ ‖XH(·, u(s, ·))‖L1(]0,1[) + ‖J(·, u)∂su(s, ·)‖L1(]0,1[)

≤ h4(1 + ‖p(s, ·)‖2
L2(]0,1[)) + ‖J‖∞‖∂su(s, ·)‖L1(]0,1[),

which can be estimated by Claim 2 by

≤ h4(1 + c22(1 + ‖∂su(s, ·)‖L2(]0,1[))
2) + ‖J‖∞‖∂su(s, ·)‖L2(]0,1[).

Therefore, theW 1,1 norm of p(s, ·) on ]0, 1[ is bounded by a quadratic function of ‖∂su(s, ·)‖L2(]0,1[).
Then the same is true a fortiori for the L∞ norm of p(s, ·).

Claim 4. For every δ > 0 there is a number m(δ) with the following property: for every
u = (q, p) ∈ U the closed subset of R (resp. of [0,+∞[),

Sδ(u) :=
{
s | ‖p(s, ·)‖L∞(]0,1[) ≤ m(δ)

}

has non-empty intersection with any closed interval I ⊂ R (resp. I ⊂ [0,+∞[) of length δ.

Indeed, for every s0 ∈ R (resp. s0 ∈ [0,+∞[),

min
s∈[s0,s0+δ]

‖∂su(s, ·)‖2
L2(]0,1[) ≤

1

δ

∫ s0+δ

s0

‖∂su(s, ·)‖2
L2(]0,1[) ds =

1

δ
‖∂su‖2

L2(]s0,s0+δ[×]0,1[) ≤
1

δ
c21

because of Claim 1. Then Claim 3 implies Claim 4 with

m(δ) = c3

(
1 +

c21
δ

)
.

Claim 5. There exists c4 such that ‖p(s, ·)‖L2(]0,1[) ≤ c4 for every u = (q, p) ∈ U and every
s ∈ R (resp. s ∈ [0,+∞[).

Given u = (q, p) ∈ U and s ∈ R (resp. s ∈ [0,+∞[), let s0 be an element of S1(u) such that
|s− s0| ≤ 1 (see Claim 4). Then

‖p(s, ·)‖2
L2(]0,1[) = ‖p(s0, ·)‖2

L2(]0,1[) +

∫ s

s0

d

dσ
‖p(σ, ·)‖2

L2(]0,1[) dσ

= ‖p(s0, ·)‖2
L2(]0,1[) + 2

∫ s

s0

∫ 1

0

〈p(σ, t), ∂sp(σ, t)〉 dt dσ

≤ m(1)2 + 2

∣∣∣∣
∫ s

s0

‖p(σ, ·)‖2
L2(]0,1[) dσ

∣∣∣∣

1
2

‖∂sp‖L2(]s0,s[×]0,1[).

By Claim 1, ‖∂sp‖L2(]s0,s[×]0,1[) ≤ ‖∂su‖L2(]s0,s[×]0,1[) ≤ c1, and using also Claim 2 we get

‖p(s, ·)‖2
L2(]0,1[) ≤ m(1)2 + 2c1

∣∣∣∣
∫ s

s0

c22(1 + ‖∂su(σ, ·)‖L2(]0,1[))
2 dσ

∣∣∣∣

1
2

≤ m(1)2 + 2c1c2

(
2|s− s0| + 2‖∂su‖2

L2(]s0,s[×]0,1[)

) 1
2 ≤ m(1)2 + 2c1c2(2 + 2c21)

1
2 .

Conclusion. Let u = (q, p) ∈ U and let I ⊂ R (resp. I ⊂ [0,+∞[) be an interval. By Claim
5,

‖p‖2
L2(I×]0,1[) =

∫

I

‖p(s, ·)‖2
L2(]0,1[) ds ≤ c24|I|,
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so it is enough to estimate the L2 norm of ∇p. By (29),

|∇p|2 ≤ |∇u|2 = |∂su|2 + |∂tu|2 = |∂su|2 + |XH − J∂su|2 ≤ (1 + 2‖J‖2
∞)|∂su|2 + 2h2

4(1 + |p|2)2,

which implies
|∇p|2 ≤ b1(1 + |∂su|2 + |p|4),

for a suitable constant b1. Integrating this inequality over ]s0, s1[×]0, 1[ and using Claim 1 we get

‖∇p‖2
L2(]s0,s1[×]0,1[) ≤ b1(|s1 − s0| + c21) + b1‖p‖4

L4(]s0,s1[×]0,1[). (32)

Let δ be a positive number, to be fixed later, and let Sδ(u) be the δ-dense subset of R (resp. of
[0,+∞[) provided by Claim 4. Let s1 ∈ Sδ(u), and set s0 = s1 − δ (resp. s0 = max{s1 − δ, 0}).
The real valued function (|p(s, t)| − m(δ))+ vanishes for s = s1, so by reflection along the line
{s0} × R we obtain the function

ϕ(s, t) =






(|p(s, t)| −m(δ))+ if s ∈ [s0, s1],

(|p(2s0 − s, t) −m(δ))+ if s ∈ [2s0 − s1, s0]

0 if s ∈ R \ [2s0 − s1, s1],

which belongs to W 1,2(R×]0, 1[) and satisfies

‖ϕ‖2
L2(R×]0,1[) = 2‖(|p| −m(δ))+‖2

L2(]s0,s1[×]0,1[), (33)

‖ϕ‖4
L4(R×]0,1[) = 2‖(|p| −m(δ))+‖4

L4(]s0,s1[×]0,1[), (34)

‖∇ϕ‖2
L2(R×]0,1[) = 2‖∇(|p| −m(δ))+‖2

L2(]s0,s1[×]0,1[)

≤ 2‖∇|p|‖2
L2(]s0,s1[×]0,1[) ≤ 2‖∇p‖2

L2(]s0,s1[×]0,1[).
(35)

Since (a+ b)4 ≤ 8(a4 + b4), by (34) we have

‖p‖4
L4(]s0,s1[×]0,1[) =

∫

]s0,s1[×]0,1[
|p|≥m(δ)

|p|4 ds dt+

∫

]s0,s1[×]0,1[
|p|<m(δ)

|p|4 ds dt

≤ 8

∫

]s0,s1[×]0,1[
|p|≥m(δ)

(
(|p| −m(δ))4 +m(δ)4

)
ds dt+m(δ)4|s1 − s0|

≤ 8‖(|p| −m(δ))+‖4
L4(]s0,s1[×]0,1[) + 9m(δ)4|s1 − s0| ≤ 4‖ϕ‖4

L4(R×]0,1[) + 9m(δ)4δ.

The interpolation estimate of Lemma 1.6 then implies

‖p‖4
L4(]s0,s1[×]0,1[) ≤ 4C‖ϕ‖2

L2(R×]0,1[)‖ϕ‖2
W 1,2(R×]0,1[) + 9m(δ)4δ

= 4C‖ϕ‖4
L2(R×]0,1[) + 4C‖ϕ‖2

L2(R×]0,1[)‖∇ϕ‖2
L2(R×]0,1[) + 9m(δ)4δ.

(36)

By (33) and Claim 5,

‖ϕ‖2
L2(R×]0,1[) ≤ 2‖p‖2

L2(]s0,s1[×]0,1[) = 2

∫ s1

s0

‖p(s, ·)‖2
L2(]0,1[) ds ≤ 2c24|s1 − s0| ≤ 2c24δ.

So (35) and (36) imply

‖p‖4
L4(]s0,s1[×]0,1[) ≤ 16Cc44δ

2 + 16Cc24δ‖∇p‖2
L2(]s0,s1[×]0,1[) + 9m(δ)4δ.

Therefore, by (32),

‖∇p‖2
L2(]s0,s1[×]0,1[) ≤ b1(δ + c21 + 16Cc44δ

2 + 9m(δ)4δ) + 16b1Cc
2
4δ‖∇p‖2

L2(]s0,s1[×]0,1[).

Hence, if we choose δ to be 1/(32b1Cc
2
4), the above inequality implies

‖∇p‖2
L2(]s0,s1[×]0,1[) ≤ 2b1(δ + c21 + 16Cc44δ

2 + 9m(δ)4δ) =: b2.
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We have proved that the square of the L2 norm of ∇p on the set I×]0, 1[ is bounded by b2, if
I ⊂ R (resp. I ⊂ [0,+∞[) is an interval with the right-hand point in Sδ(u) and length at most δ.
By the properties of Sδ(u), any interval in R (resp. in [0,+∞[) of length less than δ can be covered
by two intervals with the right-hand point in Sδ(u) and length at most δ. Any bounded interval
I ⊂ R (resp. I ⊂ [0,+∞[) can be covered by ⌈|I|/δ⌉ + 1 intervals of length less than δ, hence by
2(⌈|I|/δ⌉ + 1) intervals with the right-hand point in Sδ(u) and length at most δ. Therefore,

‖∇p‖2
L2(I×]0,1[) ≤ 2b2

(⌈ |I|
δ

⌉
+ 1

)
≤ 2b2

( |I|
δ

+ 2

)
,

concluding the proof.
We recall that λ0 denotes the Lagrangian subspace (0) × Rn in the symplectic vector space

Rn ×Rn, and that W 1,r
λ0

denotes the Sobolev space of R2n-valued maps taking values in λ0 on the
boundary:

W 1,r
λ0

(Ω,R2n) := W 1,r
0 (Ω,Rn) ×W 1,r(Ω,Rn).

We recall the following consequences of the Calderon-Zygmund inequalities for the Cauchy-Riemann
operator:

Proposition 1.8 Let Ω be one of the following domains: the cylinder R × T, the strip R×]0, 1[,
the half-cylinder ]0,+∞[×T, the half-strip ]0,+∞[×]0, 1[. For every r > 1 there exists a constant
Cr(Ω) ≥ 1 such that

‖∇v‖Lr(Ω) ≤ Cr(Ω)‖(∂s − J0∂t)v‖Lr(Ω)

for every v ∈ W 1,r
λ0

(Ω,R2n).

Indeed, one can start by proving the estimate

‖∇ϕ‖Lr ≤ c(r)‖∂ϕ‖Lr , ∀ϕ ∈ C∞
c (R × T,C), ∀r ∈]1,+∞[,

by the usual argument involving the fundamental solution of the Cauchy-Riemann operator
∂ = ∂s + i∂t (see e.g. [13] or [17], Appendix B). By Schwarz reflection, we obtain an analogous
estimate for ϕ ∈ C∞([0,+∞[×T,C) with real boundary conditions, and for ϕ ∈ C∞(R× [0, 1],C)
with real boundary conditions. A second reflection yields to the analogous estimate for ϕ ∈
C∞([0,+∞[×[0, 1],C) with real boundary conditions. Proposition 1.8 follows, by identifying R2n

with Cn and J0 with −i.
It will be useful to view M as a submanifold of RN , for some large N , by means of an isometric

embedding M →֒ RN , as given by Nash’s theorem. Such an embedding induces also isometric
embeddings of TM and T ∗M into R2N , and it is easy to see that Ĵ is the restriction of J0.

Theorem 1.9 Assume that H satisfies (H1), (H2). Then there exists a number j0 > 0 such that,

if the t-dependent 1-periodic almost complex structure J on T ∗M satisfies ‖J − Ĵ‖∞ < j0, then
for every a1, a2 ∈ R there holds:

1. the set of solutions u = (q, p) ∈ C∞(R × T, T ∗M) of

∂su− J(t, u)(∂tu−XH(t, u)) = 0, (37)

such that a1 ≤ A(u(s, ·)) ≤ a2 for any s ∈ R, is bounded in L∞(R × T, T ∗M);

2. the set of solutions u = (q, p) ∈ C∞(R× [0, 1], T ∗M) of (37) such that q(s, 0) = q0, q(s, 1) =
q1, and a1 ≤ A(u(s, ·)) ≤ a2 for any s ∈ R is bounded in L∞(R × [0, 1], T ∗M).

Furthermore, if r > 2 there exists j1 = j1(r) such that if ‖J−Ĵ‖∞ < j1 then for every a1, a2, a3 ∈ R

there holds:
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3. the set of solutions

u = (q, p) ∈ C∞(]0,+∞[×T, T ∗M) ∩W 1,r(]0, 1[×T, T ∗M)

of (37) such that a1 ≤ A(u(s, ·)) ≤ a2 for any s ∈ [0,+∞[, and

‖q(0, ·)‖W 1−1/r,r(T,RN ) ≤ a3

is bounded in L∞([0,+∞[×T, T ∗M);

4. the set of solutions

u = (q, p) ∈ C∞(]0,+∞[×[0, 1], T ∗M) ∩W 1,r(]0, 1[×]0, 1[, T ∗M)

of (37) such that q(s, 0) = q0, q(s, 1) = q1, a1 ≤ A(u(s, ·)) ≤ a2 for any s ∈ [0,+∞[, and

‖q(0, ·)‖W 1−1/r,r(]0,1[,RN) ≤ a3

is bounded in L∞([0,+∞[×[0, 1], T ∗M).

Proof. Using the above mentioned embedding, equation (37) can be written as

(∂s − J0∂t)u = (J − J0)∂tu− JXH(t, u). (38)

Let χ ∈ C∞(R) be a function such that χ = 1 on [0, 1], suppχ ⊂]− 1, 2[, 0 ≤ χ ≤ 1, and |χ′| ≤ 2.

Proof of (i) and (ii). Let u = (q, p) be a solution meeting the requirements of (i) or
(ii). Let r > 2, k ∈ Z and let q̄(t) = tq1 + (1 − t)q0 in case (ii), q̄(t) ≡ 0 in case (i). Set
v(s, t) = χ(s− k)(q(s, t) − q̄(t), p(s, t)), (s, t) ∈ R × [0, 1]. By (38), v satisfies

(∂s − J0∂t)v = (J(t, u) − J0)∂tv + χ′(q − q̄, p) − χ(0, q̄′) − χJ(t, u)XH(t, u),

on either R×T - case (i) - or R× [0, 1] - case (ii) - in which case we also have v(s, 0) = v(s, 1) = 0
for every s ∈ R. Moreover v has compact support, so by Proposition 1.8

‖∇v‖Lr(R×]0,1[) ≤ Cr‖(∂s − J0∂t)v‖Lr(R×]0,1[) ≤ Cr‖J − J0‖∞‖∂tv‖Lr(R×]0,1[)

+4 · 3 1
rCrd+ 2‖p‖Lr(]k−1,k+2[×]0,1[) + Cr3

1
r ‖q′‖∞ + Cr‖J‖∞‖XH(·, u)‖Lr(]k−1,k+2[×]0,1[),

(39)

where d = max {|z| | z ∈M} and Cr = Cr(R×T) (resp. Cr = Cr(R×]0, 1[)). If ‖J − Ĵ‖∞ < +∞,
‖J‖∞ is bounded, so Lemma 1.7 implies

‖p‖Lr(]k−1,k+2[×]0,1[) ≤ Sr‖p‖W 1,2(]k−1,k+2[×]0,1[) ≤ Src(3 + (1 +
√

3)2)
1
2 ≤ 4Src, (40)

where Sr is the norm of the continuous embedding

W 1,2(]0, 3[×]0, 1[) →֒ Lr(]0, 3[×]0, 1[).

By (29) we also have

‖XH(·, u)‖Lr(]k−1,k+2[×T) ≤ h4(3
1
r + ‖p‖2

L2r(]k−1,k+2[×]0,1[))

≤ h4(3
1
r + S2

2r‖p‖2
W 1,2(]k−1,k+2[×]0,1[)) ≤ h4(3

1
r + 16S2

2rc
2).

(41)

If ‖J − J0‖∞ = ‖J − Ĵ‖∞ < 1/Cr, estimate (39) together with (40) and (41), implies that ∇v is
uniformly bounded in Lr(R×]0, 1[). Therefore, u is uniformly bounded in W 1,r(]k, k + 1[×]0, 1[),
and since r > 2, also in L∞([k, k+1]× [0, 1]). Since k ∈ Z was arbitrary we have a uniform bound
for u in L∞(R × [0, 1]). Therefore, statement (i) (resp. (ii)) holds with

j0 = sup
r∈]2,+∞[

1/Cr(R × T) (resp. j0 = sup
r∈]2,+∞[

1/Cr(R×]0, 1[) ).
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Proof of (iii) and (iv). The above argument for k ≥ 1 yields to a uniform bound for u in
L∞([1,+∞[×[0, 1]). There remains to find a uniform bound for u in L∞([0, 1] × [0, 1]).

By the theory of Sobolev traces (see [2] section 7.56), there exists a number br such that every
f ∈W 1−1/r,r({0}×]0, 1[) has an extension f̃ ∈ W 1,r(]0,+∞[×]0, 1[) such that

‖f̃‖W 1,r(]0,+∞[×]0,1[) ≤ br‖f‖W 1−1/r,r({0}×]0,1[).

Therefore, there exists a map q̃ ∈W 1,r(]0,+∞[×]0, 1[,RN) such that q̃(0, t) = q(0, t) and

‖q̃‖W 1,r(]0,+∞[×]0,1[) ≤ br‖q(0, ·)‖W 1−1/r,r(]0,1[) ≤ bra3.

In the case (iii) we can assume q̃ to be 1-periodic in t, while in the case (iv) we can assume that
q̃(s, 0) = q0, q̃(s, 1) = q1, for every s ∈ [0, 1]. The map w(s, t) = χ(s)(q(s, t) − q̃(s, t), p(s, t))
satisfies

(∂s − J0∂t)w = (J(t, u) − J0)∂tw + χ′(q − q̃, p) − χ(∂sq̃, ∂tq̃) − χJ(t, u)XH(t, u),

Since
‖χ(∂sq̃, ∂tq̃)‖Lr(]0,+∞[×]0,1[) ≤ ‖q̃‖W 1,r(]0,+∞[×]0,1[) ≤ 2bra3,

the same argument used above - involving Proposition 1.8 and theW 1,2 estimate of p on ]0, 2[×]0, 1[
provided by Lemma 1.7 - allows to conclude.

Once L∞ estimates are established, compactness in C∞
loc follows by standard arguments. Here

we are interested in the following statement:

Theorem 1.10 Assume that H satisfies (H1), (H2), and that J satisfies ‖J−Ĵ‖∞ < j0. Then for
every x−, x+ ∈ PΛ(H) (resp. x−, x+ ∈ PΩ(H)), the space MΛ(x−, x+) (respectively MΩ(x−, x+))
is pre-compact in C∞

loc(R × T, T ∗M) (respectively in C∞
loc(R × [0, 1], T ∗M)).

Indeed, solutions of (14) on R×T with bounded action have uniform gradient bounds, because
otherwise a bubbling-off argument would produce a J-holomorphic sphere in T ∗M , which cannot
exist because ω is exact. Solutions of (14) on R × [0, 1] taking values in T ∗

q0
M for t = 0 and in

T ∗
q1
M for t = 1, and having bounded action also have uniform gradient bounds: in this case the

bubbling-off argument could also produce a J-holomorphic disc with boundary in either T ∗
q0
M or

T ∗
q1
M , which cannot exist because the Liouville form θ vanishes on the vertical subspaces.
Then elliptic bootstrap produces bounds on the derivatives of every order. See for instance [9]

or [26] for more details.

Remark 1.5 Notice that all the results of this section hold also by replacing (H2) with the weaker
condition (29), which could therefore replace (H2) in the whole paper. However, condition (29) is
somehow unsatisfactory because it depends on the choice of the metric on M .

Remark 1.6 Besides the conditions on H, the L∞ estimates for the Floer equation require that
J belongs to a suitable neighborhood of the set of almost complex structures on T ∗M produced by
metrics on M . It would be interesting to have a better description of a set of ω-compatible almost
complex structures for which the L∞ estimates hold.

1.6 Transversality

Let J = J (〈·, ·〉) be the set of all t-dependent 1-periodic smooth ω-compatible almost complex

structures on T ∗M such that ‖J − Ĵ‖∞ < +∞. The distance

dist (J1, J2) = ‖J1 − J2‖∞ + distC∞
loc

(J1, J2)

makes J a complete metric space. Here distC∞
loc

is the usual distance

distC∞
loc

(J1, J2) =

∞∑

r=1

∞∑

ℓ=0

2−(r+ℓ) ‖J1 − J2‖Cℓ(Kr)

1 + ‖J1 − J2‖Cℓ(Kr)

, where Kr = {(t, q, p) ∈ T × T
∗M | |p| ≤ r} ,
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inducing the C∞
loc topology. We denote by Jreg = Jreg(H) the subset of J consisting of those

almost complex structures J for which the section

∂J,H : B(x−, x+) → W(x−, x+)

is transverse to the zero-section, for every x−, x+ ∈ P(H). We recall that a subset of a topological
space is called residual if it contains a countable intersection of open and dense sets. Baire theorem
states that a residual subset of a complete metric space is dense. The proof of the following result
is absolutely standard (see [11]):

Theorem 1.11 The set Jreg(H) is residual in J .

1.7 The Floer complex

Let H be a Hamiltonian on T × T ∗M satisfying (H0), (H1), and (H2). Denote by CFΛ,k(H)
(resp. CFΩ,k(H)) the free Abelian group generated by the elements x of PΛ(H) (resp. PΩ(H))
with Maslov index µΛ(x) = k (resp. µΩ(x) = k). Notice that these groups need not be finitely
generated. Since the discussion will present no differences in the Λ and in the Ω case, we will omit
the subscripts and deal with both situations at the same time.

Let j0 be the positive number given by Theorem 1.9. By Theorem 1.11, the set

Jj0,reg(H) :=
{
J ∈ Jreg(H) | ‖J − Ĵ‖∞ < j0

}

is non-empty. Let us fix some J ∈ Jj0,reg(H). If x, y ∈ P(H) have index difference µ(x) −
µ(y) = 1, Theorem 1.4 and transversality imply that M(x, y) is a one-dimensional manifold. The
compactness stated in Theorem 1.10 and transversality imply that M(x, y) consists of finitely
many lines. Then we can define the integer n(x, y) to be

n(x, y) :=
∑

[u]∈M(x,y)/R

ǫ([u]),

the numbers ǫ([u]) ∈ {−1,+1} having been defined in section 1.4. The homomorphism

∂k = ∂k(H, J) : CFk(H) → CFk−1(H)

is defined in terms of the generators by

∂kx =
∑

y∈P(H)
µ(y)=k−1

n(x, y)y, ∀x ∈ P(H), µ(x) = k.

Indeed, the above sum contains finitely many terms thanks to (16) and Lemma 1.5. A standard
gluing argument shows that ∂k−1 ◦ ∂k = 0, so {CF∗(H), ∂∗(H, J)} is a complex of free Abelian
groups, called the Floer complex of (H, J). The homology of such a complex is called the Floer
homology of (H, J):

HFk(H, J) =
ker(∂k : CFk(H, J) → CFk−1(H, J))

ran(∂k+1 : CFk+1(H, J) → CFk(H, J))
.

The Floer complex splits into subcomplexes, one for each conjugacy class of π1(M) in the Λ case,
one for each element of π1(M) in the Ω case. Moreover, the Floer complex has an R-filtration
defined by the action functional: if CF a

k (H) denotes the subgroup of CFk(H) generated by the
x ∈ P(H) such that A(x) < a, the boundary operator ∂k maps CF a

k (H) into CF a
k−1(H), so

{CF a
∗ (H), ∂∗(H, J)} is a subcomplex. By Lemma 1.5, such a subcomplex is finitely generated.

Changing the orientation data (namely, the preferred unitary trivializations of x∗(TT ∗M),
for x ∈ P(H), and the coherent orientation for Σ), we obtain an isomorphic chain complex, the
isomorphism being of the special form

x 7→ σ(x)x, ∀x ∈ P(H),
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where σ(x) ∈ {−1,+1}. What is less trivial is that a different choice of the almost complex
structure J - an operation which changes the Floer equation, and thus its solution spaces - produces
isomorphic Floer complexes, as the next result shows:

Theorem 1.12 If J0, J1 ∈ Jj0,reg(H), there is an isomorphism of complexes

φ01 : {CF∗(H), ∂∗(H, J0)} → {CF∗(H), ∂∗(H, J1)}, x 7→
∑

y∈P(H)
µ(y)=µ(x)

n01(x, y)y,

such that n01(x, x) = 1 and n01(x, y) = 0 if A(x) ≤ A(y) and x 6= y, or if x and y are not
homotopic. Such an isomorphism is uniquely defined up to chain homotopy. If J2 is a third
element of Jj0,reg(H), the isomorphisms φ12 ◦ φ01 and φ02 are chain homotopic.

In particular, the isomorphism φ01 preserves the R-filtration, and it is compatible with the
splitting of the Floer complex determined by the structure of π1(M). The above result is due to
Cornea and Ranicki, [6] (in the case of Floer homology for a class of compact symplectic manifolds).
See [20], Lemma 6.3, for an earlier application of the same argument. Here we just sketch the
proof.

Proof. Using the fact that the space Jj0 , the L∞-ball of J centered in Ĵ of radius j0, is
contractible, one can find a homotopy (Js)s∈R in Jj0 such that Js = J0 for s ≤ 0 and Js = J1 for
s ≥ 1, such that counting solutions of

∂su− Js(t, u)(∂tu−XH(t, u)) = 0 (42)

between x, y ∈ P(H) of the same Maslov index, defines a chain map

φ01 : {CF∗(H), ∂∗(H, J0)} → {CF∗(H), ∂∗(H, J1)}.

If u solves (42),
d

ds
A(u(s)) = −

∫ 1

0

|∂su(s, t)|2Js,t
dt,

so the only solutions of (42) connecting a curve x with a curve y with A(y) ≥ A(x) are the
stationary ones. Notice that transversality holds automatically at stationary solutions u(s, t) =
x(t). Indeed, linearization along such a solution yields to an operator of the form

∂s − (Js∂t + S(s, t)) (43)

where the self-adjoint operator Js∂t+S(s, ·) depends on s, but represents always the same quadratic
form - the second differential of A at x - with respect to inner products varying with s. In this
case, the operator (43) is easily shown to be invertible.

We conclude that the coefficients n01(x, y) satisfy the required assumptions. This means that, if
we order the elements of P(H) - the generators of CF∗(H) - by increasing action, φ01 is represented
by a lower triangular matrix with diagonal entries equal 1, so it is an isomorphism. The other
statements can be proved by introducing a homotopy of homotopies.

Therefore, we can consider the Floer homology HF∗(H) = HF∗(H, J) as independent of J . A
different choice of the Hamiltonian, instead, produces chain homotopic complexes:

Theorem 1.13 Let H0, H1 be Hamiltonians on T × T ∗M satisfying (H0), (H1), and (H2), and
let J ∈ Jj0,reg(H0) ∩ Jj0,reg(H1). Then there is a homotopy equivalence

ψ01 : {CF∗(H0), ∂∗(H0, J)} → {CF∗(H1), ∂∗(H1, J)},

uniquely determined up to chain homotopy. If moreover H2 is a third Hamiltonian satisfying the
same conditions, and such that J ∈ Jj0,reg(H2), then the chain maps ψ12 ◦ ψ01 and ψ02 are chain
homotopic.
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In particular, HF∗(H0) ∼= HF∗(H1). This result can be proved using the standard homotopy
argument from Floer theory: one introduces an s-dependent Hamiltonian H : R × T × T ∗M → R

such that H(s, ·, ·) = H0 for s ≤ 0 and H(s, ·, ·) = H1 for s ≥ 1, and defines the chain map ψ01 by
considering the solutions of the equation

∂su− J(t, u)(∂tu−XH(s, t, u)) = 0,

connecting elements of P(H0) and P(H1). The only delicate point is the L∞ estimate for the
solutions of the above problem. This estimate can be achieved by adapting the arguments of
section 1.5, provided that the Hamiltonians H0 and H1 are close enough. Then the isomorphism
between the Floer complexes of two arbitrary Hamiltonians satisfying (H0), (H1) and (H2) can
be constructed by composing a finite number of isomorphisms. Details are contained in the next
section.

1.8 L∞ estimates for homotopies

Let H0 and H1 be Hamiltonians on T × T ∗M satisfying (H1) and (H2). Up to choosing a smaller
h0 and larger h1, h2, we may assume that H0 and H1 satisfy conditions (H1) and (H2) with the
same constants h0, h1, h2. Let χ : R → [0, 1] be a smooth function such that χ(s) = 0 for s ≤ 0,
χ(s) = 1 for s ≥ 1, 0 ≤ χ′ ≤ 2, and set

H : R × T × T ∗M → R, H(s, t, x) = χ(s)H1(t, x) + (1 − χ(s))H0(t, x). (44)

Every Hamiltonian Hs := H(s, ·, ·) satisfies (H1) and (H2) with constants h0, h1, h2.
We are going to show that if H0 and H1 are close enough, then Lemma 1.7 extends to the

s-dependent Hamiltonian H .

Lemma 1.14 Assume that the t-dependent 1-periodic almost complex structure J on T ∗M satisfies
‖J‖∞ < +∞. There exists a positive number ǫ = ǫ(h0, ‖J‖∞) such that if H0 and H1 satisfy
conditions (H1) and (H2) with constants h0, h1, h2, and

|H1(t, q, p) −H0(t, q, p)| ≤ h+ ǫ|p|2 ∀(t, q, p) ∈ T × T ∗M, (45)

for some h ≥ 0, then the following a priori estimate holds. For every pair of real numbers a1, a2

there exists a number c such that for every u = (q, p) ∈ C∞(R × [0, 1], T ∗M) solving

∂su− J(t, u)(∂tu−XH(s, t, u)) = 0, (46)

and such that
AH0(u(s, ·)) ≤ a2 ∀s ≤ 0, AH1(u(s, ·)) ≥ a1 ∀s ≥ 1, (47)

there holds
‖p‖L2(I×]0,1[) ≤ c|I| 12 , ‖∇p‖L2(I×]0,1[) ≤ c(1 + |I| 12 ),

for every interval I ⊂ R.

Proof. Denote by U the set of solutions u = (q, p) of (46) satisfying the action estimate (47).

Claim 0. For every u ∈ U and every s ∈ R there holds

AHs(u(s, ·)) ≤ a2 + 2h+ 2ǫ‖p‖2
L2(]0,1[×]0,1[). (48)

The function s 7→ AHs(u(s, ·)) is decreasing on ] −∞, 0] and on [1,+∞[, so

AHs(u(s, ·)) = AH0 (u(s, ·)) ≤ a2 ∀s ≤ 0,

AHs(u(s, ·)) = AH1(u(s, ·)) ≤ AH1 (u(1, ·)) ∀s ≥ 1,
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and it is enough to prove (48) for s ∈ [0, 1]. In this case, by (45), (46), and (47),

AHs(u(s, ·)) = AH0(u(0, ·)) +

∫ s

0

d

dσ

(
AHσ (u(σ, ·))

)
dσ

= AH0(u(0, ·)) +

∫ s

0

(
dAHσ (u(σ, ·))[∂su(σ, ·)] −

∫ 1

0

∂sH(σ, t, u) dt

)
dσ

= AH0(u(0, ·)) −
∫ s

0

∫ 1

0

|∂su|2Jt
dt dσ +

∫ s

0

χ′(σ)

∫ 1

0

(H0(t, u) −H1(t, u)) dt dσ

≤ a2 + ‖χ′‖∞
(
hs+ ǫ

∫ s

0

‖p(σ, ·)‖2
L2(]0,1[) dσ

)
≤ a2 + 2h+ 2ǫ‖p‖2

L2(]0,1[×]0,1[),

proving the claim.

Claim 1. For every u ∈ U there holds

‖∂su‖2
L2(R×]0,1[) ≤ ‖J‖2

∞

(
a2 − a1 + 2h+ 2ǫ‖p‖2

L2(]0,1[×]0,1[)

)
.

Indeed, by (45), (46), (47),

‖∂su‖2
L2(R×]0,1[) ≤ ‖J−1‖2

∞

∫ +∞

−∞

∫ 1

0

|∂su|2Jt
dt ds = −‖− J‖2

∞

∫ +∞

−∞

dAHs(u(s, ·))[∂su(s, ·)] ds

= −‖J‖2
∞

∫ +∞

−∞

(
d

ds

(
AHs(u(s, ·))

)
+

∫ 1

0

∂sH(s, t, u) dt

)
ds

= −‖J‖2
∞

(
lim

s→+∞
AHs(u(s, ·)) − lim

s→−∞
AHs(u(s, ·)) +

∫ 1

0

χ′(s)

∫ 1

0

(
H1(t, u) −H0(t, u)

)
dt ds

)

≤ ‖J‖2
∞

(
a2 − a1 + 2h+ 2ǫ‖p‖2

L2(]0,1[×]0,1[)

)
,

as claimed.

Claim 2. For every u ∈ U and every s ∈ R there holds

h0

2
‖p(s, ·)‖2

L2(]0,1[) − (h1 + a2 + 2h) ≤ 2ǫ‖p‖2
L2(]0,1[×]0,1[) +

1

2h0
‖J‖2

∞‖∂su(s, ·)‖2
L2(]0,1[). (49)

Since Hs satisfies condition (H1), arguing as in the proof of Lemma 1.7, Claim 2, we obtain

θ(∂tu) −H(s, t, u) ≥ h0|p|2 − h1 − ‖J‖∞|p| |∂su|.

Then by Claim 0,

a2 + 2h+ 2ǫ‖p‖2
L2(]0,1[×]0,1[) ≥ AHs(u(s, ·)) =

∫ 1

0

(θ(∂tu) −H(s, t, u)) dt

≥ h0‖p(s, ·)‖2
L2(]0,1[) − h1 − ‖J‖∞‖p(s, ·)‖L2(]0,1[)‖∂su(s, ·)‖L2(]0,1[)

≥ h0

2
‖p(s, ·)‖2

L2(]0,1[) − h1 −
1

2h0
‖J‖2

∞‖∂su(s, ·)‖2
L2(]0,1[),

which is equivalent to (49).

Integrating the inequality (49) over ]0, 1[ and using Claim 1, we get

h0

2
‖p‖2

L2(]0,1[×]0,1[) − (h1 + a2 + 2h) ≤ 2ǫ‖p‖2
L2(]0,1[×]0,1[) +

1

2h0
‖J‖2

∞‖∂su‖2
L2(]0,1[×]0,1[)

≤ 2ǫ‖p‖2
L2(]0,1[×]0,1[) +

1

2h0
‖J‖4

∞

(
a2 − a1 + 2h+ 2ǫ‖p‖2

L2(]0,1[×]0,1[)

)
,
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or equivalently,
(
h0

2
− 2ǫ

(
1 +

1

2h0
‖J‖4

∞

))
‖p‖2

L2(]0,1[×]0,1[) ≤ h1 + a2 + 2h+
1

2h0
‖J‖4

∞(a2 − a1 + 2h).

Therefore, if ǫ = ǫ(h0, ‖J‖∞) satisfies

ǫ <
h0

4

(
1 +

1

2h0
‖J‖4

∞

)−1

, (50)

we deduce that ‖p‖L2(]0,1[×]0,1[) is uniformly bounded, for u = (q, p) ∈ U . Hence, Claim 1 and
Claim 2 can be improved, producing the following estimates.

Claim 1′. There exists c1 such that ‖∂su‖L2(R×]0,1[) ≤ c1 for every u ∈ U .

Claim 2′. There exists c2 such that ‖p(s, ·)‖L2(]0,1[) ≤ c2(1 + ‖∂su(s, ·)‖L2(]0,1[)) for every
u ∈ U and every s ∈ R.

These are exactly the first two claims in the proof of Lemma 1.7. The remaining part of the
proof of that lemma extends to the case of the s-dependent Hamiltonian without any change.

The above lemma and the Calderon-Zygmund estimates of Proposition 1.8 imply the following
L∞ estimates. The proof is identical to the proof of Theorem 1.9.

Theorem 1.15 Assume that the Hamiltonians H0 and H1 satisfy (H1), (H2), and (45) with
ǫ = ǫ(h0, ‖J‖∞) small enough as in (50). Let H be the s-dependent Hamiltonian defined in (44).
Assume that the t-dependent 1-periodic almost complex structure J on T ∗M satisfies ‖J − Ĵ‖∞ <
j0, where j0 is given by Theorem 1.9. Then for every a1, a2 ∈ R there holds:

1. the set of solutions u = (q, p) ∈ C∞(R × T, T ∗M) of

∂su− J(t, u)(∂t −XH(s, t, u)) = 0, (51)

such that AH0 (u(s, ·)) ≤ a2 for every s ≤ 0 and AH1(u(s, ·)) ≥ a1 for every s ≥ 1, is bounded
in L∞(R × T, T ∗M);

2. the set of solutions u = (q, p) ∈ C∞(R× [0, 1], T ∗M) of (51) such that q(s, 0) = q0, q(s, 1) =
q1, AH0(u(s, ·)) ≤ a2 for every s ≤ 0 and AH1(u(s, ·)) ≥ a1 for every s ≥ 1, is bounded in
L∞(R × [0, 1], T ∗M).

Let us conclude this section by sketching the proof of Theorem 1.13. Let H0 and H1 be
Hamiltonians satisfying (H0), (H1), and (H2). We may assume that (H1) and (H2) hold with the
same constants h0, h1, h2. By the second condition of (H2) and the compactness of M , there exists
h3 ≥ 0 such that

|H0(t, q, p)| ≤ h3(1 + |p|2), |H1(t, q, p)| ≤ h3(1 + |p|2). (52)

Let λ ∈ [0, 1] and set Hλ = λH1 + (1 − λ)H0. If λ0, λ1 ∈ [0, 1], (52) implies

|Hλ1(t, q, p) −Hλ0(t, q, p)| = |(λ1 − λ0)(H1 −H0)(t, q, p)| ≤ 2h3|λ1 − λ0|(1 + |p|2).

So, if |λ1−λ0| ≤ ǫ/(2h3) the Hamiltonians Hλ0 and Hλ1 satisfy the assumptions of Theorem 1.15.
In this case, the moduli spaces of solutions u of equation (51) satisfying u(−∞, ·) ∈ P(Hλ0) and
u(+∞, ·) ∈ P(Hλ1) can be used to define a chain map

ψλ0λ1 : {CF∗(Hλ0 , ∂∗(Hλ0 , J)} → {CF∗(Hλ1 , ∂∗(Hλ1 , J)}.

By the usual gluing argument, ψλ1λ0 is a chain homotopy inverse of ψλ0λ1 , which thus induces an
isomorphism at the homology level. The chain homotopy equivalence

ψ01 : {CF∗(H0, ∂∗(H0, J)} → {CF∗(H1, ∂∗(H1, J)},
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can then be defined as the composition

ψ01 = ψλk−1λk
◦ · · · ◦ ψλ0λ1 where 0 = λ0 < λ1 < · · · < λk = 1,

|λj − λj−1| ≤
ǫ

2h3
∀j = 1, . . . , k.

Standard gluing arguments imply that the chain homotopy class of ψ01 does not depend on the
choices we have made, and that ψ12 ◦ ψ01 is chain homotopic to ψ02, concluding the proof of
Theorem 1.13.

2 The Morse complex of the Lagrangian action functional

2.1 Lagrangian dynamical systems

Let M be a connected compact smooth manifold, the configuration space of a Lagrangian dy-
namical system, assumed to be one-periodic in time. Points in the tangent bundle TM will be
denoted by (q, v), with q ∈ M , v ∈ TqM . We will denote by τ : TM → M the standard projec-
tion, and by T v

(q,v)TM the vertical subspace kerDτ(q, v) ∼= TqM of T(q,v)TM . The Lagrangian

L : T × TM → R, T = R/Z, will be a smooth function satisfying:

(L1) there exists ℓ0 > 0 such that
∇vvL(t, q, v) ≥ ℓ0I

for every (t, q, v) ∈ T × TM ;

(L2) there exists ℓ1 ≥ 0 such that

|∇vvL(t, q, v)| ≤ ℓ1, |∇qvL(t, q, v)| ≤ ℓ1(1 + |v|), |∇qqL(t, q, v)| ≤ ℓ1(1 + |v|2)

for every (t, q, v) ∈ T × TM .

Here we have fixed a Riemannian metric 〈·, ·〉 on M , with corresponding norm | · |, and ∇vv,
∇qv, ∇qq denote the components of the Hessian in the splitting of TTM into the vertical and
horizontal part, given by the corresponding Levi-Civita connection. It is easily seen that the
above conditions do not depend on the choice of the Riemannian metric. Physical Lagrangians of
the form

L(t, q, v) =
1

2
|T (t, q)v −A(t, q)|2 − V (t, q)

satisfy conditions (L1) and (L2), provided that the symmetric tensor T ∗T is everywhere positive.
The strong convexity assumption4 (L1) implies that L defines a smooth vector field YL on TM .

Indeed, we can define a 1-periodic Hamiltonian on T ∗M by means of the Legendre transform (see
for instance [15]):

H(t, q, p) = max
v∈TqM

(p[v] − L(t, q, v)) = p[v(t, q, p)] − L(t, q, v(t, q, p)), (53)

for every (t, q, p) ∈ T × T ∗M , where the map v is a component of the fiber-preserving diffeomor-
phism

L−1
L : T × T ∗M → T × TM, (t, q, p) 7→ (t, q, v(t, q, p)),

the inverse of

LL : T × TM → T × T ∗M, (t, q, v) 7→
(
t, q, dL(t, q, v)|T v

(q,v)
TM

)
.

4Here it would be enough to assume that the map sending v into the restriction of dL(t, q, v) to the vertical
subspace is a diffeomorphism from TqM onto T ∗

q M . The strict convexity in the v variables will be important in
order to guarantee the Palais-Smale condition (see Proposition 2.4).
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Actually,
H(t, q, p) = p[v] − L(t, q, v) if and only if p = dL(t, q, v)|T v

(q,v)
TM . (54)

The Hamiltonian H and the canonical symplectic form ω on T ∗M define the 1-periodic Hamilto-
nian vector field XH on T ∗M , and YL is defined to be the pull-back of XH by the diffeomorphism
LL. Equivalently, YL is the 1-periodic Hamiltonian vector field on TM determined by the sym-
plectic form L∗

Lω and by the Hamiltonian H ◦ LL.

Remark 2.1 Notice that if the Lagrangian has the form L(t, q, v) = 1/2|v|2 − V (t, q), then LL is
the identity on T times the isomorphism TM → T ∗M induced by the metric 〈·, ·〉, and H(t, q, p) =
1/2|p|2 + V (t, q). In general, however, the restriction of LL to the fibers need not be linear.

The integral curves y :]a, b[→ TM of the vector field YL are of the form y(t) = (q(t), q̇(t)),
where q :]a, b[→M solves the second order ODE

∇t (∇vL(t, q(t), q̇(t))) = ∇qL(t, q(t), q̇(t)). (55)

Here ∇t denotes the covariant derivation along q, and ∇v, ∇q denote the vertical and the horizontal
part of the gradient of L.

We will be interested in the set PΛ(L) of 1-periodic solutions of (55), and in the set PΩ(L, q0, q1)
of solutions q : [0, 1] →M of (55) such that q(0) = q0 and q(1) = q1, for two fixed points q0, q1 ∈M .
In each of these cases we shall make one of the following non-degeneracy assumptions:

(L0)Λ every solution q ∈ PΛ(L) is non-degenerate, meaning that the differential of the time-one
integral map of YL at q(0) does not have the eigenvalue 1;

(L0)Ω every solution q ∈ PΩ(L, q0, q1) is non-degenerate, meaning that the differential of the
time-one integral map of YL,

T(q(0),q̇(0))TM → T(q(1),q̇(1))TM,

maps the vertical subspace at (q(0), q̇(0)) into a subspace having intersection (0) with the
vertical subspace at (q(1), q̇(1)).

These conditions can be stated in an equivalent way in terms of the Jacobi vector fields along
the solution q: (L0)Λ requires that there are no 1-periodic Jacobi vector fields, while (L0)Ω requires
that there are no Jacobi vector fields vanishing for t = 0 and for t = 1.

The Legendre transform LL provides us with a one-to-one correspondence between the set of
solutions PΛ(L) (resp. PΩ(L)) of the Lagrangian system and the set of solutions PΛ(H) (resp.
PΩ(H)) of the Hamiltonian system. The non-degeneracy condition (L0) is equivalent to its coun-
terpart (H0).

2.2 The variational setting

Denote by Λ1(M) the space of all loops q : T → M of Sobolev class W 1,2, and by Ω1(M, q0, q1)
the space of all paths q : [0, 1] → M of Sobolev class W 1,2 such that q(0) = q0 and q(1) = q1.
These spaces have Hilbert manifold structures (see [14] for this and for the other results cited in
this section). The tangent space of Λ1(M) at q is identified with the space of 1-periodic W 1,2

tangent vector fields along q, while the tangent space of Ω1(M) at q is identified with the space
of W 1,2 tangent vector fields along q vanishing for t = 0 and for t = 1.

The action functional

E(q) = EL(q) :=

∫ 1

0

L(t, q(t), q̇(t)) dt

is smooth on Λ1(M) and on Ω1(M, q0, q1). Its restrictions to these manifolds will be denoted by
EΛ and EΩ. The critical points of EΛ are the elements of PΛ(L), while the critical points of EΩ

are the elements of PΩ(L, q0, q1). Condition (L0)Λ (resp. (L0)Ω) is equivalent to the fact that all
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the critical points of EΛ (resp. of EΩ) are non-degenerate. Moreover, condition (L1) implies that
all these critical points have finite Morse indices, denoted by mΛ(q) and mΩ(q). The proof of the
following result, essentially due to Duistermaat [8], can be found in [35], Theorem 1.2, for the case
of periodic orbits, and in [25], Proposition 6.38, for the case of fixed end-points5.

Theorem 2.1 Assume that M is orientable, let q ∈ PΛ(L), and let x ∈ PΛ(H), (t, x(t)) =
LL(t, q(t), q̇(t)), be the corresponding 1-periodic solution of the Hamiltonian system on T ∗M . Then

mΛ(q) = µΛ(x).

Let q ∈ PΩ(L, q0, q1) and let x ∈ PΩ(H, q0, q1), (t, x(t)) = LL(t, q(t), q̇(t)), be the corresponding
solution of the Hamiltonian system on T ∗M . Then

mΩ(q) = µΩ(x).

The following comparison between the Hamiltonian and the Lagrangian action functionals
follows immediately from the definition of the Hamiltonian (53) and from (54):

Lemma 2.2 If x = (q, p) : [0, 1] → T ∗M is continuous, with q of class W 1,2, then

A(x) ≤ E(q),

the equality holding if and only if p(t) = dL(t, q(t), q̇(t))|T v
q̇(t)

TM , that is if and only if (t, q(t), p(t)) =

LL(t, q(t), q̇(t)) for every t ∈ [0, 1]. In particular, the Hamiltonian and the Lagrangian action func-
tionals coincide on the solutions of the two systems.

Let q be a solution in PΛ(L) (resp. in PΩ(L)), and let x = (q, p) be the corresponding solution
in PΛ(H) (resp. in PΩ(H)). By the above lemma, A ≤ E ◦ τ∗ on Λ1(T ∗M) (resp. on Ω1(T ∗M)),
and A(x) = E(τ∗ ◦ x). So, taking also into account the fact that x is a critical point of AΛ (resp.
AΩ), and τ∗ ◦ x = q is a critical point of EΛ (resp. EΩ), we deduce the following:

Lemma 2.3 Let q be a solution in PΛ(L) (resp. in PΩ(L)), and let x = (q, p) be the corresponding
solution in PΛ(H) (resp. in PΩ(H)). Then

d2A(x)[ζ, ζ] ≤ d2E(q)[Dτ∗(x)[ζ], Dτ∗(x)[ζ]],

for every ζ ∈ TxΛ1(T ∗M) (resp. ζ ∈ TxΩ1(T ∗M, q0, q1)).

Assumption (L1) implies that L is bounded below, and so is the action functional E .
The metric 〈·, ·〉 on M induces a Riemannian metric on the Hilbert manifolds Λ1(M) and

Ω1(M, q0, q1), defined by

〈〈ξ, η〉〉1 =

∫ 1

0

(〈∇tξ,∇tη〉 + 〈ξ, η〉) dt,

for ξ, η elements of TqΛ
1(M) or of TqΩ

1(M, q0, q1). The corresponding distances on Λ1(M) and on
Ω1(M, q0, q1) are compatible with the manifold topologies, and they are complete. The following
compactness result is proved in [3] (in the case of periodic orbits, the case of fixed end-points is
analogous):

Proposition 2.4 The functional E satisfies the Palais-Smale condition on the Riemannian man-
ifold (Λ1(M), 〈〈·, ·〉〉1) and on (Ω1(M, q0, q1), 〈〈·, ·〉〉1): every sequence (qn) ⊂ Λ1(M) (resp. (qn) ⊂
Ω1(M, q0, q1)) such that E(qn) is bounded and ‖∇EΛ(qn)‖1 (resp. ‖∇EΩ(qn)‖1) is infinitesimal, is
compact.

5In [25] and in [35] there is a sign difference, due to the fact that in both papers the cotangent bundle is endowed
with the symplectic form −ω.
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2.3 The Morse complex

If a functional f of class Ch, h ∈ {2, 3, . . . ,∞}, on a Hilbert Riemannian manifold (M, 〈〈·, ·〉〉)
satisfies:

1. all the critical points x of f are non-degenerate and have finite Morse index m(x);

2. f is bounded below;

3. the Riemannian manifold (M, 〈〈·, ·〉〉) is complete;

4. f satisfies the Palais-Smale condition on (M, 〈〈·, ·〉〉);

we can associate to it a complex of Abelian groups, the Morse complex of f , whose homology is
isomorphic to the singular homology of M. Its construction will be sketched in this section. See
[1] for full details.

Denote by crit(f) the set of critical points of f . Our assumptions imply that the set

crit(f) ∩ {f ≤ a} (56)

is finite for every a ∈ R. Denote by critk(f) the set of critical points x of f of Morse index
m(x) = k, and let CMk(f) be the free Abelian group generated by the elements of critk(f).
Notice that CMk(f) may have infinite rank.

Denote by G the space of Ch−1 sections G of the bundle of endomorphisms of TM such that

G(p) is 〈〈·, ·〉〉-symmetric for every p ∈ M, ‖G‖Ch−1 <∞, and ‖G‖C0 < 1,

endowed with the (metrizable) topology of uniform convergence up to the (h− 1)-th derivative. If
G ∈ G,

g(ξ, η) = gG(ξ, η) := 〈〈(I +G(p))ξ, η〉〉, ξ, η ∈ TpM,

is a complete Riemannian metric on M, uniformly equivalent to the original one, so f satisfies the
Palais-Smale condition with respect to g. The gradient of f with respect to the metric g will be
denoted by ∇gf .

Let φt be the local integral flow of the vector field −∇gf . Its rest points are the critical
points of f , and f is strictly decreasing on the non-constant orbits of φt. For x ∈ crit(f), let
TxM = V −(x)⊕V +(x) be the splitting of TxM corresponding to the decomposition of the spectrum
of the Hessian ∇2

gf(x) into the negative and the positive part. By (i), m(x) = dim V −(x) is always
finite. If x ∈ crit(f), the unstable and the stable manifold of x,

Wu(x) = Wu(x; f, g) =

{
p ∈ M | lim

t→−∞
φt(p) = x

}
,

W s(x) = W s(x; f, g) =

{
p ∈ M | lim

t→+∞
φt(p) = x

}
,

are images of Ch−1 embeddings V −(x) →֒ M, V +(x) →֒ M, and TxW
u(x) = V −(x), TxW

s(x) =
V +(x). In particular,

dimWu(x) = m(x), codimW s(x) = m(x),

Wu(x) is orientable, and W s(x) is co-orientable, meaning that its normal bundle is orientable.
Assumptions (i-iv) on the functional have the following consequences:

Proposition 2.5 Each unstable manifold Wu(x) is pre-compact in M. The closure of Wu(x) is
contained in

Wu(x) ∪
⋃

y∈crit(f)
f(y)<f(x)

Wu(y).
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Proposition 2.6 There is a residual set Greg ⊂ G of elements G for which Wu(x) and W s(y)
intersect transversally, whenever6 m(x) −m(y) ≤ h− 1. In particular, for G ∈ Greg:

1. if m(x) ≤ m(y) and x 6= y then Wu(x) ∩W s(y) = ∅;

2. if m(x) −m(y) = 1 then Wu(x) ∩W s(y) is a one-dimensional manifold.

A metric g = gG coming from G ∈ Greg is therefore a Morse-Smale metric for f . Let us fix
such a metric g. Consider the increasing sequence of open sets

Uk =
{
φt(p) | t ≥ 0, p ∈ U(x), x ∈ crit(f) with m(x) ≤ k

}
, k ∈ N,

where U(x) is an open neighborhood of x. We also set

U−1 = ∅, and U =
⋃

k∈N

Uk.

Using Proposition 2.6 (i) and the Palais-Smale condition, it can be proved7 that if the neigh-
borhoods U(x) are suitably small, then the singular homology groups of the pair (Uk, Uk−1) are

Hj(Uk, Uk−1) =

{
CMk(f) if j = k,

0 if j 6= k.
(57)

Indeed, Hk(Uk, Uk−1) is the free Abelian group generated by the relative homology classes of balls
in Wu(x), for x ∈ critk(f), chosen to be so large that their boundary lies in Uk−1. Moreover, the
gradient flow of f can be used to show that U is a deformation retract of M. By (57), {Uk}k≥−1

is a cellular filtration of U (see [7], section V.1), and we define

∂k = ∂k(f, g) : CMk(f) ∼= Hk(Uk, Uk−1) → Hk−1(Uk−1)

→ Hk−1(Uk−1, Uk−2) ∼= CMk−1(f)

to be the associated cellular homomorphism. By standard results about cellular filtrations, the
above homomorphisms are the data of a complex, the cellular complex associated to the filtration
{Uk}k≥−1, whose homology is isomorphic to the singular homology of U :

Hk({CM∗(f), ∂∗(f, g)}) ∼= Hk(U) ∼= Hk(M).

The complex {CM∗(f), ∂∗(f, g)} is called the Morse complex of (f, g).
Finally, let us describe what the boundary homomorphisms ∂k(f, g) look like, in terms of the

generators of CMk(f). Let us fix an orientation of each unstable manifold Wu(x), in an arbitrary
way. Consequently, we get a co-orientation of each stable manifold W s(x). Since a transversal
intersection of an oriented submanifold and a co-oriented submanifold has a canonical orientation,
by Proposition 2.6 (ii) we get an orientation of each intersection Wu(x) ∩ W s(y), in the case
m(x)−m(y) = 1. Let x ∈ critk(f) and y ∈ critk−1(f). The compactness expressed by Proposition
2.5 and the transversality expressed by Proposition 2.6 imply that Wu(x) ∩ W s(y) consists of
finitely many flow lines. The flow line through p - denote it by [p] - has the orientation defined
above, and we define ǫ([p]) to be +1 if the tangent vector −∇gf(p) is positively oriented, to

6The fact that we get transversal intersections only for index difference not exceeding h − 1 is related to the
fact that we are assuming f to be only of class Ch. The possibility of keeping the regularity requirements low is
important in nonlinear analysis, because functionals arising from smooth problems have often low regularity, and
because in infinite dimensions Ch+1 functionals are not dense in the space of Ch ones, when h ≥ 1. Notice that
C2 regularity implies transversality up to index difference one, which is just what is needed for the construction of
the Morse complex. In our case, the action functional E is smooth, so we get transversal intersections for arbitrary
index difference, for a residual set of smooth metrics.

7Here we are assuming that for every k ∈ N there are finitely many critical points of Morse index k. In the case
of infinitely many critical points with the same index a stronger transversality assumption would be needed. In
that case, an easier way to construct the Morse complex is to deal with each sublevel separately, and then take a
direct limit. See [1] for more details.
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be −1 in the opposite case. Then the integer n(x, y) is defined to be the sum of these entries,
n(x, y) =

∑
ǫ([p]), for [p] varying among all the flow lines connecting x to y. It can be proved

that
∂kx =

∑

y∈critk−1(f)

n(x, y)y.

Notice that the above sum is finite because the set (56) is finite. Furthermore, it can be proved
that the isomorphism class of the complex {CM∗(f), ∂∗(f, gG)} does not depend on G ∈ Greg:

Proposition 2.7 Assume that g0 and g1 are Morse-Smale metrics for f , uniformly equivalent to
〈〈·, ·〉〉. Then there exists a chain isomorphism

φ01 : {CM∗(f), ∂∗(f, g0)} → {CM∗(f), ∂∗(f, g1)}, x 7→
∑

y∈crit(f)
m(y)=m(x)

n01(x, y)y,

such that n01(x, x) = 1 and n01(x, y) = 0 if f(x) ≤ f(y) and x 6= y.

The proof is completely analogous to that of Theorem 1.12. We summarize the above discussion
into the following:

Theorem 2.8 Let f be a C2 functional on a Hilbert manifold M, satisfying (i), (ii), (iii), (iv).
Let CMk(f) be the free Abelian group generated by its critical points of Morse index k. Then the
above construction produces a complex

∂k : CMk(f) → CMk−1(f), ∂kx =
∑

y∈critk−1(f)

n(x, y)y,

uniquely determined up to isomorphism, whose homology groups are isomorphic to the singular
homology groups of M.

Clearly, the Morse complex splits into subcomplexes, one for each connected component of
M, and the isomorphisms with singular homology respects such a splitting. Moreover, the
Morse complex is filtered by the functional level: if a ∈ R, the boundary homomorphism maps
CMa

k (f) := span (critk(f) ∩ {f < a}) into CMa
k−1(f). So {CMa

∗ (f), ∂∗(f, g)} is a subcomplex of
{CM∗(f), ∂∗(f, g)}, and its homology is seen to be isomorphic to the singular homology of the
sublevel {f < a}. Both the splitting into subcomplexes and the R filtering are compatible with
the isomorphisms of Proposition 2.7.

2.4 The Morse complex of E
By what we have seen, assumptions (L0), (L1), and (L2) imply that both EΛ and EΩ satisfy the
conditions (i), (ii), (iii), and (iv) of section 2.3. Therefore, if CMk(EΛ) (resp. CMk(EΩ)) denotes
the free Abelian group generated by the solutions in PΛ(L) (resp. PΩ(L, q0, q1)) of Morse index
iΛ(q) = k (resp. iΩ(q) = k) we get an isomorphism class of complexes

∂k : CMk(EΛ) → CMk−1(EΛ), (resp. ∂k : CMk(EΩ) → CMk−1(EΩ)),

whose homology is isomorphic to the singular homology of Λ1(M) (respectively of Ω1(M, q0, q1)).
Since the inclusions

Λ1(M) →֒ Λ(M),

Ω1(M, q0, q1) →֒
{
q ∈ C0([0, 1],M) | q(0) = q0, q(1) = q1

}

are homotopy equivalence and since the latter space is homotopically equivalent to the based loop
space Ω(M), we deduce that the homology of the above complexes are isomorphic to the singular
homology of the free loop space of M , and of the based loop space of M :

Hk({CM∗(EΛ), ∂∗}) ∼= Hk(Λ(M)), Hk({CM∗(EΩ), ∂∗}) ∼= Hk(Ω(M)).
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The complex {CM∗(EΛ), ∂∗} (resp. {CM∗(EΩ), ∂∗}) splits into subcomplexes, one for each conju-
gacy class of π1(M) (resp. one for each element of π1(M)). Finally, if CMa

k (EΛ) (resp. CMa
k (EΩ)

denotes the subgroup of CMk(EΛ) (resp. CMk(EΩ)) generated by solutions of action less than a,
we obtain a filtering of the above complex by subcomplexes such that

Hk({CMa
∗ (EΛ), ∂∗}) ∼= Hk({EΛ < a}), (resp. Hk({CMa

∗ (EΩ), ∂∗}) ∼= Hk({EΩ < a}) ).

3 The isomorphism between the Morse and the Floer com-

plex

We are now ready to state and prove the main result of this paper:

Theorem 3.1 Assume that the Hamiltonian H ∈ C∞(T× T ∗M) satisfies (H0), (H1), and (H2).
Assume also that H is the Legendre transform of the Lagrangian L ∈ C∞(T × TM) satisfying
(L0), (L1), and (L2). Let J be a t-dependent, t ∈ T, ω-compatible almost complex structure on
T ∗M , belonging to Jj0,reg(H). Let g be a Riemannian structure on Λ1(M) (resp. on Ω1(M, q0, q1))
uniformly equivalent to 〈〈·, ·〉〉1, and having the Morse-Smale property with respect to E. Then there
is a chain complex isomorphism

Θ : {CM∗(E), ∂∗(E , g)} −→ {CF∗(H), ∂∗(H, J)}

of the form

Θq =
∑

x∈P(H)
µ(x)=m(q)

n+(q, x)x, ∀q ∈ P(L),

such that n+(q, x) = 0 if E(q) ≤ A(x), unless q and x correspond to the same solution - that is
L(t, q(t), q̇(t)) = (t, x(t)) for every t ∈ [0, 1] - in which case n+(q, x) = ±1.

In particular, Θ induces an isomorphism between the subcomplexes {CMa
∗ (E)} and {CF a

∗ (H)},
for every a ∈ R. Finally, Θ is compatible with the splitting of the Floer and the Morse complex
into the subcomplexes corresponding to different conjugacy classes of π1(M) (resp. of different
elements of π1(M)).

Fix some r ∈]2, 4]. Given q ∈ PΛ(L) and x ∈ PΛ(H), let M+
Λ(q, x) be the set of all maps

u ∈ C∞(]0,+∞[×T, T ∗M) ∩W 1,r(]0, 1[×T, T ∗M)

such that

∂su− J(t, u)(∂tu−XH(t, u)) = 0 on ]0,+∞[×T,

τ∗u(0, ·) ∈Wu(q) = Wu(q; EΛ, gΛ),

lim
s→+∞

u(s, t) = x(t) uniformly in t ∈ T.

Similarly, if q ∈ PΩ(L) and x ∈ PΩ(H), let M+
Ω(q, x) be the set of all maps

u ∈ C∞(]0,+∞[×[0, 1], T ∗M) ∩W 1,r(]0, 1[×]0, 1[, T ∗M)

such that

∂su− J(t, u)(∂tu−XH(t, u)) = 0 on ]0,+∞[×[0, 1],

τ∗u(s, 0) = q0, τ
∗u(s, 1) = q1 ∀s ≥ 0, and τ∗u(0, ·) ∈ Wu(q) = Wu(q; EΩ, gΩ),

lim
s→+∞

u(s, t) = x(t) uniformly in t ∈ [0, 1].

It makes sense to look for solutions u which are of Sobolev classW 1,r near {0}×[0, 1], with r ∈]2, 4],
because in this case u(0, ·) belongs to the Sobolev space W 1−1/r,r(]0, 1[, T ∗M), and the boundary
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condition τ∗u(0, ·) ∈ Wu(q) is well-posed because Wu(q) consists of curves in W 1,2(]0, 1[), which
continuously embeds into W 1−1/r,r(]0, 1[) for r ≤ 4 (see [2], section 7.5.8).

The action functional satisfies the estimates

E(φt0
−∇gE

(q̄)) = E(q) −
∫ t0

−∞

g(∇gE(φt
−∇gE(q̄)),∇gE(φt

−∇gE(q̄))) dt < E(q)

for every q̄ ∈ Wu(q) \ {q}, and

A(u(s0, ·)) = A(x) +

∫ +∞

s0

∫ 1

0

|∇JA(u(s, ·))(t)|2Jt
dt ds > A(x)

for every solution u of ∂su − J(t, u)(∂tu −XH(t, u)) = 0 converging to x for s → +∞, different
from the stationary solution u(s, t) = x(t). Then Lemma 2.2 implies that if u ∈ M+(q, x),
q̄(t) := τ∗u(0, t), and t ≤ 0 ≤ s, then

E(q) ≥ E(φt
−∇E (q̄)) ≥ E(q̄) ≥ A(u(0, ·)) ≥ A(u(s, ·)) ≥ A(x), (58)

and E(q) = A(x) if and only if q and x correspond to the same solution by the Legendre transform
- that is LL(t, q(t), q̇(t)) = (t, x(t)) for every t - in which case M+(q, x) consists of a single element,
the stationary solution x.

3.1 The Fredholm theory

Let us describe the functional setting which allows to see M+(q, x) as the set of zeros of a smooth
section of a Banach bundle. In the Λ-case define B+

Λ = B+
Λ (q, x) to be the set of maps u :

[0,+∞[×T → T ∗M which are of Sobolev class W 1,r on every compact subset of [0,+∞[×T and
such that:

1. τ∗u(0, ·) ∈Wu(q);

2. there is s0 ≥ 0 for which

u(s, t) = expx(t)(ζ(s, t)) ∀(s, t) ∈]s0,+∞[×T,

where ζ is a W 1,r section of x∗(TT ∗M) →]s0,+∞[×T.

The set B+
Λ has a natural structure of smooth Banach manifold, and its tangent space at u ∈ B+

Λ

is identified with the space of W 1,r sections w of u∗(TT ∗M) such that

Dτ∗(u(0, ·))[w(0, ·)] ∈ Tτ∗u(0,·)W
u(q). (59)

Similarly, B+
Ω = B+

Ω (q, x) will be the Banach manifold of all maps u : [0,+∞[×[0, 1] → T ∗M which
are of Sobolev class W 1,r on every compact subset of [0,+∞[×[0, 1] such that u(s, 0) ∈ T ∗

q0
M ,

u(s, 1) ∈ T ∗
q1
M for every s ≥ 0, and (i) and the analogous of (ii) hold.

We denote by W+
Λ = W+

Λ (q, x) (resp. W+
Ω = W+

Ω (q, x)) the Banach bundle over B+
Λ (resp. B+

Ω)
whose fiber W+

u at u is the space of Lr sections of u∗(TT ∗M). Standard elliptic regularity results
and the exponential convergence guaranteed by (H0) imply that M+(q, x) is the set of zeros of
the smooth section

∂+
J,H : B+ → W+, u 7→ ∂su− J(t, u)(∂tu−XH(t, u)).

The aim of this section is to prove the following:

Theorem 3.2 If q ∈ P(L), x ∈ P(H), and u ∈ M+(q, x), then the fiberwise derivative of ∂+
J,H :

B+(q, x) → W+(q, x) is a Fredholm operator of index

indDf∂
+
J,H(u) = m(q) − µ(x).
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By (59), the space Wu of W 1,r sections w of u∗(TT ∗M) such that w(0, ·) ∈ T v
u(0,·)T

∗M - or

equivalently Dτ∗(u(0, ·))[w(0, ·)] = 0 - is a closed linear subspace of TuB+(q, x) of codimension
m(q). Therefore it is enough to prove that the restriction of Df∂

+
J,H(u) to Wu is a Fredholm

operator of index −µ(x).
We recall that λ0 denotes the vertical Lagrangian subspace of (R2n, ω0), λ0 = (0) × Rn. The

proof of the following lemma is analogous to that of Lemma 1.3 (it is actually simpler):

Lemma 3.3 Let u ∈ M+
Λ(q, x) (resp. M+

Ω(q, x)), and let Φ+ : T × R
2n → x∗(TT ∗M) (resp.

Φ+ : [0, 1] × R2n → x∗(TT ∗M)) be a unitary trivialization such that Φ+(·)λ0 = T v
x(·)T

∗M . Then
there exists a unitary trivialization

Φ : [0,+∞] × T × R
2n → u∗(TT ∗M) (resp. Φ : [0,+∞] × [0, 1]× R

2n → u∗(TT ∗M))

which is smooth on ]0,+∞]×T (resp. on ]0,+∞]× [0, 1]) and of class W 1,r on ]0, 1[×T (resp. on
]0, 1[×]0, 1[), such that Φ(s, t)λ0 = T v

u(s,t)T
∗M for every (s, t) ∈ [0,+∞]×T (resp. [0,+∞]×[0, 1]),

and Φ(+∞, ·) = Φ+(·).

The trivialization Φ given by Lemma 3.3 defines a conjugacy between the restriction to Wu of
Df∂

+
J,H(u) : TuB+ → W+

u and a bounded operator

D+
S,Λ : W 1,r

λ0
(]0,+∞[×T,R2n) → Lr(]0,+∞[×T,R2n),

(resp. D+
S,Ω : W 1,r

λ0
(]0,+∞[×]0, 1[,R2n) → Lr(]0,+∞[×]0, 1[,R2n) )

of the form
D+

S v = ∂sv − J0∂tv − S(s, t)v.

Here S : [0,+∞[×T → gl(2n,R) (resp. S : [0,+∞[×[0, 1] → gl(2n,R)) has the form

S = Φ−1(∇sΦ − J(t, u)∇tΦ −∇ΦJ(t, u)∂tu+ ∇Φ∇H(t, u)).

Therefore, S is smooth on ]0,+∞[×T (resp. on ]0,+∞[×[0, 1]), and it is of class Lr on ]0, 1[×T

(resp. on ]0, 1[×]0, 1[). Moreover,

lim
s→+∞

S(s, t) = S(+∞, t) uniformly in t,

where S(+∞, t) is symmetric for every t, and the solution of

γ′(t) = J0S(+∞, t)γ(t), γ(0) = I, (60)

is conjugated to the differential of the Hamiltonian flow along x:

γ(t) = Φ(+∞, t)−1Dφt
H(x(0))Φ(+∞, 0).

Hence (H0)Λ is translated into the condition

1 is not an eigenvalue of γ(1), (61)

while (H0)Ω is translated into the condition

γ(1)λ0 ∩ λ0 = (0). (62)

Therefore Theorem 3.2 is a consequence of the following:

Theorem 3.4 If r ∈]2,+∞[ the following facts hold:
(a) Assume that the matrix valued map S :]0,+∞[×T → gl(2n,R) is of the form S = S1 + S2,
where S1 ∈ L∞(]0,+∞[×T, gl(2n,R)), and S2 ∈ Lr(]0,+∞[×T, gl(2n,R)) has bounded support.
Moreover, assume that the limit

S(+∞, t) := lim
s→+∞

S(s, t) = lim
s→+∞

S1(s, t)
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is uniform in t ∈ T, and that the solution γ of (60) satisfies (61). Then the bounded linear operator

D+
S,Λ : W 1,r

λ0
(]0,+∞[×T,R2n) → Lr(]0,+∞[×T,R2n), u 7→ ∂su− J0∂tu− S(s, t)u,

is Fredholm of index
indD+

S,Λ = −µCZ(γ). (63)

(b) Assume that the matrix-valued map S :]0,+∞[×]0, 1[→ gl(2n,R) is of the form S = S1 + S2,
where

S1 ∈ L∞(]0,+∞[×]0, 1[, gl(2n,R)), S2 ∈ Lr(]0,+∞[×]0, 1[, gl(2n,R)),

and S2 has bounded support. Moreover, assume that the limit

S(+∞, t) := lim
s→+∞

S(s, t) = lim
s→+∞

S1(s, t)

is uniform in t ∈ [0, 1], and that the solution γ of (60) satisfies (62). Then the bounded linear
operator

D+
S,Ω : W 1,r

λ0
(]0,+∞[×]0, 1[,R2n) → Lr(]0,+∞[×]0, 1[,R2n),

u 7→ ∂su− J0∂tu− S(s, t)u,

is Fredholm of index

indD+
S,Ω =

n

2
− µ(γ(·)λ0, λ0). (64)

Proof. The multiplication operator

W 1,r
λ0

(]0,+∞[×T,R2n) → Lr(]0,+∞[×T,R2n), u 7→ S2u,

(resp. W 1,r
λ0

(]0,+∞[×]0, 1[,R2n) → Lr(]0,+∞[×]0, 1[,R2n), u 7→ S2u )

is compact. Indeed, if S2 has support in [0, s0] × [0, 1], the above operator factorizes through

W 1,r(]0, s0[×]0, 1[) →֒ L∞(]0, s0[×]0, 1[)
S2·−→ Lr(]0, s0[×]0, 1[),

where the inclusion is compact because r > 2, and the second map is continuous because S2 ∈ Lr.
Since a compact perturbation of a Fredholm operator is still Fredholm with the same index, the
presence of the term S2 does not change the Fredholm property and the index. Therefore, in the
remaining part of the proof we may assume that S2 = 0, hence that S = S1 is in L∞. In this case
statements (a) and (b) will actually hold for every r ∈]1,+∞[.

The proof that D+
S,Λ and D+

S,Ω are Fredholm is now standard; let us sketch the argument,
referring to [27] for more details. The main ingredients are the following facts:

1. By condition (61) (resp. (62)), the translation invariant operator

DS(+∞,·),Λ : W 1,r(R × T,R2n) → Lr(R × T,R2n)

(resp. DS(+∞,·),Ω : W 1,r
λ0

(R×]0, 1[,R2n) → Lr(R×]0, 1[,R2n) )

mapping u into ∂su− J0∂tu− S(+∞, t)u, is invertible.

2. The Calderon-Zygmund inequality stated in Proposition 1.8 implies that there exists c0 such
that

‖u‖W 1,r(]0,+∞[×]0,1[) ≤ c0(‖D+
S ‖Lr(]0,+∞[×]0,1[) + (1 + ‖S‖L∞)‖u‖Lr(]0,+∞[×]0,1[)),

for every u ∈W 1,r
λ0

(]0,+∞[×T,R2n) (resp. u ∈W 1,r
λ0

(]0,+∞[×]0, 1[,R2n)).

38



3. Let us identify the cokernel of D+
S with the annihilator of the range of D+

S : if 1/r+1/r′ = 1
we have

cokerD+
S,Λ

∼= (ranD+
S,Λ)◦ =

{
v ∈ Lr′

(]0,+∞[×T,R2n)
∣∣∣

∫

]0,+∞[×T

v ·D+
S,Λu ds dt = 0 ∀u ∈ W 1,r

λ0
(]0,+∞[×T,R2n)

}
,

(
resp. cokerD+

S,Ω
∼= (ranD+

S,Ω)◦ =
{
v ∈ Lr′

(]0,+∞[×]0, 1[,R2n)
∣∣∣

∫

]0,+∞[×]0,1[

v ·D+
S,Λu ds dt = 0 ∀u ∈W 1,r

λ0
(]0,+∞[×]0, 1[,R2n)

})
.

Then the regularity theory for the weak solutions of the Cauchy-Riemann operator implies
the following facts:

(a) the cokernel of D+
S,Λ consists of the maps v ∈W 1,r′

(]0,+∞[×T,R2n) solving

∂sv + J0∂tv + S(s, t)T v = 0, (65)

and such that v(0, t) ∈ λ⊥0 = Rn × (0) for every t ∈ T;

(b) the cokernel of D+
S,Ω consists of the maps v ∈ W 1,r′

(]0,+∞[×]0, 1[,R2n) solving (65),
and such that

v(0, t) ∈ λ⊥0 = R
n × (0) ∀t ∈ [0, 1], v(s, 0), v(s, 1) ∈ λ0 = (0) × R

n ∀s ≥ 0.

By (i) and (ii) there exist constants s0 and c1 such that

‖u‖W 1,r(]0,+∞[×]0,1[) ≤ c1
(
‖D+

S u‖Lr(]0,+∞[×]0,1[) + ‖u‖Lr(]0,s0[×]0,1[)

)
.

Then the compactness of the embedding

W 1,r(]0, s0[×]0, 1[) →֒ Lr(]0, s0[×]0, 1[)

implies that D+
S has finite dimensional kernel and closed range. Finally, (iii) implies that the

cokernel of D+
S can be identified with the kernel of an operator of the same kind (with different

boundary conditions), which is finite dimensional by the previous argument.

There remains to compute the Fredholm index of D+
S,Λ and D+

S,Ω. We will make this computa-
tion when n = 1 and S is a suitable constant matrix, and then we will use a homotopy argument
to pass to a general S. Notice that if S is constant, the elements of the kernel and cokernel of
D+

S are smooth up to the boundary, and the asymptotic conditions (61) and (62) imply that they
decay exponentially fast for s→ +∞.

Claim 1. If n = 1 and S(s, t) = Qα =

(
0 α
α 0

)
, with α ∈ R \ {0}, then

indD+
S,Λ = 0 = −µCZ(γ).

Notice that in this case γ(t) =

(
eαt 0
0 e−αt

)
, so (61) is satisfied, and by (9) µCZ(γ) = 0.

Let u ∈ kerD+
Qα,Λ. Then u is a smooth solution in W 1,r(]0,+∞[×T,R2) of

{
∂su− J0∂tu−Qαu = 0 on [0,+∞[×T,

u1(0, t) = 0 ∀t ∈ T.

Then the function

w(s, t) =

{
u(s, t) if s ≥ 0,

(−u1(−s, t), u2(−s, t)) if s < 0,
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belongs to W 1,r(R × T,R2), and solves the same problem. Hence, w belongs to the kernel of the
translation invariant operator DQα,Λ, which is invertible by (i), so w = 0. By (iii-a), a similar
argument shows that also the cokernel of D+

Qα,Λ is (0). Therefore D+
Qα,Λ is invertible, and in

particular its index is 0.

Claim 2. If n = 1 and S(s, t) = θI, with θ ∈ R \ 2πZ, then

indD+
θI,Λ = −2

⌊
θ

2π

⌋
− 1 = −µCZ(γ). (66)

Notice that in this case γ(t) = etθJ0, so condition (61) is equivalent to θ /∈ 2πZ, and by (9),
µCZ(γ) = 2⌊θ/(2π)⌋ + 1.

By separating the variables, it is easily seen that the solutions of the equation

∂su− J0∂tu− θu = 0 on [0,+∞[×T (67)

have the form
u(s, t) =

∑

h∈Z

e(θ−2πh)se2πhtJ0ζh, ζh = (ξh, ηh) ∈ R
2.

In order for such a function to decay for s→ +∞, it is necessary that ζh = 0 whenever θ−2πh > 0,
so in the sum above h ranges from ⌈θ/(2π)⌉ to +∞. In particular, the first component of u(0, t)
is

u1(0, t) =

+∞∑

h=⌈θ/(2π)⌉

(ξh cos 2πht+ ηh sin 2πht). (68)

Recalling that {1, sin 2πt, cos 2πt, sin 4πt, cos 4πt, . . . } is a complete orthogonal family in L2(T),
we find that:

• if θ > 0, u1(0, ·) vanishes identically on T if and only if ξh = ηh = 0 for every h;

• if θ < 0, (68) can be rewritten as

u1(0, t) = ξ0 +

−⌈θ/(2π)⌉∑

h=1

((ξh + ξ−h) cos 2πht+ (ηh − η−h) sin 2πht)

+

+∞∑

h=−⌈θ/(2π)⌉

(ξh cos 2πht+ ηh sin 2πht),

so u1(0, ·) vanishes identically on T if and only if ξh = ηh = 0 for h ≥ −⌈θ/(2π)⌉+1, ξ0 = 0,
ξ−h = −ξh and η−h = ηh for h ∈ {1, . . . ,−⌈θ/(2π)⌉}.

We conclude that the kernel of D+
θI,Λ is (0) when θ > 0, and it consists of the functions

eθs

(
0

η0

)
+

−⌈θ/(2π)⌉∑

h=1

(
e(θ−2πh)se2πhtJ0

(
ξh
ηh

)
+ e(θ+2πh)se−2πhtJ0

(−ξh
ηh

))
,

when θ < 0. Therefore

dim kerD+
θI,Λ =

{
0 if θ > 0,

1 − 2
⌈

θ
2π

⌉
if θ < 0.

By (iii-a), the annihilator of the range of D+
θI,Λ consists of the smooth R

2n-valued maps on
[0,+∞[×T which solve 





∂sv + J0∂tv + θv = 0 on ]0,+∞[×T,

v1(0, t) = 0 ∀t ∈ T,

v(s, ·) → 0 for s→ +∞.
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Since v solves the above system if and only if w(s, t) = J0v(s,−t) solves






∂sw − J0∂tw + θw = 0 on ]0,+∞[×T,

w2(0, t) = 0 ∀t ∈ T,

w(s, ·) → 0 for s→ +∞,

we find

dim cokerD+
θI,Λ = dimkerD+

−θI,Λ =

{
1 − 2

⌈
− θ

2π

⌉
if θ > 0,

0 if θ < 0,

and the index formula (66) follows.

Proof of (a). Now let S be arbitrary. If µCZ(γ) is odd, we can find θ ∈ R \ 2πZ such that

2

⌊
θ

2π

⌋
+ 1 = µCZ(γ).

Reordering the coordinates (q1, . . . , qn, p1, . . . , pn) as (q1, p1, . . . , qn, pn), we consider the symmetric
matrix

S0 =

(
θ 0
0 θ

)
⊕

(
0 1
1 0

)
⊕ · · · ⊕

(
0 1
1 0

)
.

By Claim 1 and Claim 2 we have

indD+
S0,Λ = −µCZ([0, 1] ∋ t 7→ etJ0S0) = −2

⌊
θ

2π

⌋
− 1 = −µCZ(γ).

If µCZ(γ) is even and n ≥ 2, we can find θ1, θ2 ∈ R \ 2πZ such that

2

⌊
θ1
2π

⌋
+ 1 = 1, 2

⌊
θ2
2π

⌋
+ 1 = µCZ(γ) − 1,

and setting

S0 =

(
θ1 0
0 θ1

)
⊕

(
θ2 0
0 θ2

)
⊕

(
0 1
1 0

)
⊕ · · · ⊕

(
0 1
1 0

)
,

we obtain again

indD+
S0,Λ = −µCZ([0, 1] ∋ t 7→ etJ0S0) = −2

⌊
θ1
2π

⌋
− 1 − 2

⌊
θ2
2π

⌋
− 1 = −µCZ(γ).

Since the Conley-Zehnder index labels the connected components of the set (8), it is easy to
construct a continuous homotopy

Hr : [0,+∞[×T → gl(2n,R), r ∈ [0, 1],

such that H0 = S0, H1 = S, Hr(+∞, t) is symmetric for every t ∈ T, and the solution γr of

γ′r(t) = J0Hr(+∞, t)γr(t), γr(0) = I,

satisfies (61). Then r 7→ D+
Hr ,Λ is a continuous path of Fredholm operators, hence

indD+
S,Λ = indD+

H1,Λ = indD+
H0,Λ = indD+

S0,Λ = −µCZ(γ).

This proves the index formula (63) in the case µCZ(γ) odd or n ≥ 2. The analysis is not complete
in the case n = 1, but this case follows from the case n = 2 by considering S ⊕ S.

Claim 3. If n = 1 and S(s, t) = θI, with θ ∈ R \ πZ, then

indD+
θI,Ω = −

⌊
θ

π

⌋
=

1

2
− µ(γλ0, λ0). (69)
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Notice that in this case γ(t) = eθtJ0 , (62) is equivalent to θ /∈ πZ, and by (10) µ(γλ0, λ0) =
⌊θ/π⌋ + 1/2. The solutions of

{
∂su− J0∂tu− θu = 0 on ]0,+∞[×]0, 1[,

u1(s, 0) = u1(s, 1) = 0 ∀s ≥ 0,

have the form:

u(s, t) =
∑

h∈Z

e(θ−hπ)sehπtJ0

(
0

ηh

)
, ηh ∈ R.

In order for such a function to decay for s→ +∞ it is necessary that ηh = 0 when θ− hπ > 0, so
in the sum above h ranges from ⌈θ/π⌉ to +∞. In particular,

u1(0, t) =
+∞∑

h=⌈θ/π⌉

ηh sinhπt. (70)

Recalling that {sinπt, sin 2πt, . . . } is a complete orthogonal family in L2(]0, 1[), we find that:

• if θ > 0, u1(0, ·) vanishes identically on [0, 1] if and only if ηh = 0 for every h;

• if θ < 0, (70) can be rewritten as

u1(0, t) =

−⌈θ/π⌉∑

h=1

(ηh − η−h) sinhπt+
+∞∑

h=−⌈θ/π⌉+1

ηh sinhπt,

so u1(0, ·) vanishes identically on [0, 1] if and only if ηh = 0 for every h ≥ −⌈θ/π⌉ + 1 and
η−h = ηh for every h ∈ {1, . . . ,−⌈θ/π⌉}.

We conclude that the kernel of D+
θI,Ω is (0) is θ > 0, and it consists of the functions

u(s, t) = eθs

(
0

ηh

)
+

−⌈θ/π⌉∑

h=1

(
e(θ−hπ)sehπtJ0 + e(θ+hπ)e−hπtJ0

) (
0

ηh

)

when θ < 0. Therefore

dimkerD+
θI,Ω =

{
0 if θ > 0,

1 −
⌈

θ
π

⌉
if θ < 0.

(71)

By (iii-b), the annihilator of the range of D+
θI,Ω consists of the smooth R2n-valued maps on

[0,+∞[×[0, 1] which solve






∂sv + J0∂tv + θv = 0 on ]0,+∞[×]0, 1[,

v1(s, 0) = v1(s, 1) = 0 ∀s ≥ 0,

v2(0, t) = 0 ∀t ∈ [0, 1],

v(s, ·) → 0 for s→ +∞.

(72)

The solutions of the first two equations of (72) have the form

v(s, t) =
∑

h∈Z

e(hπ−θ)sehπtJ0

(
0

ηh

)
, ηh ∈ R.

In order for such a function to decay for s→ +∞, it is necessary that ηh = 0 whenever hπ−θ > 0,
so in the above sum h ranges from −∞ to ⌊θ/π⌋. In particular, the second component of v(0, t)
is

v2(0, t) =
∑

h≤⌊θ/π⌋

ηh coshπt. (73)

Recalling that {1, cosπt, cos 2πt, . . . } is a complete orthogonal family in L2(]0, 1[), we find that:
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• if θ < 0, v1(0, ·) vanishes identically on [0, 1] if and only if ηh = 0 for every h;

• if θ > 0, (73) can be rewritten as

v2(0, t) = η0 +

⌊h/π⌋∑

h=1

(ηh + η−h) coshπt+
∑

h<−⌊θ/π⌋

ηh coshπt,

so v2(0, ·) vanishes identically on [0, 1] if and only if η0 = 0, ηh = 0 for every h < −⌊θ/π⌋,
and η−h = −ηh for every h ∈ {1, . . . , ⌊θ/π⌋}.

We conclude that the space of solutions of (72) is (0) if θ < 0, it consists of the functions

v(s, t) =

⌊θ/π⌋∑

h=1

(
ehπ−θ)sehπtJ0 − e−(hπ+θ)se−hπtJ0

)(
0

ηh

)
,

when θ < 0. Therefore

dim cokerD+
θI,Ω =

{
0 if θ < 0,⌊

θ
π

⌋
if θ > 0.

(74)

The index formula (69) follows from (71) and (74).

Proof of (b). Since γ(0) = I and γ(1)λ0 ∩ λ0 = (0), µ(γλ0, λ0) − n/2 is an integer (see [24]
Corollary 4.12), so we can find numbers θ1, . . . θn ∈ R \ πZ such that

n∑

h=1

⌊
θj

π

⌋
+
n

2
= µ(γλ0, λ0).

If S0 is the symmetric matrix

S0 =

(
θ1 0
0 θ1

)
⊕ · · · ⊕

(
θ2 0
0 θ2

)
,

and γ0 : [0, 1] → Sp(2n), γ0(t) = etJ0S0 , by Claim 3 we have

indD+
S0,Ω =

n

2
− µ(γ0λ0, λ0) = −

h∑

j=1

⌊
θj

π

⌋
=
n

2
− µ(γλ0, λ0).

By Corollary 4.11 of [24], two paths γ0, γ1 : [0, 1] → Sp(2n) with γj(0) = I and γj(1)λ0 ∩ λ0 = (0)
are homotopic within this class if and only if

µ(γ0λ0, λ0) = µ(γ1λ0, λ0).

Therefore a homotopy argument analogous to the one used to prove (a) allows to conclude the
proof of (64).

3.2 Compatible orientations

The aim of this section is to orient the manifolds M+(q, x) in a way which is compatible with the
orientations of M(x, y) and of Wu(q), for every x, y ∈ P(H) and q ∈ P(L). The construction will
be analogous to the one described in section 1.4.

Fix some r ∈]2, 4], and denote by Σ+
Λ the set of operators

D+
S,Λ : W 1,r

λ0
(]0,+∞[×T,R2n) → Lr(]0,+∞[×T,R2n)

of the form
v 7→ ∂sv − J0∂tv − S(s, t)v, (75)
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where
S ∈ C0(]0,+∞] × T, gl(2n)) ∩ Lr(]0, 1[×T, gl(2n))

is such that the loop S(+∞, ·) : T → Sym(2n) is a non-degenerate path, in the sense of section
1.4. By Theorem 3.4 (a), D+

S,Λ is a Fredholm operator of index −µCZ(γS(+∞,·)).

Similarly, Σ+
Ω will denote the set of operators

D+
S,Ω : W 1,r

λ0
(]0,+∞[×]0, 1[,R2n) → Lr(]0,+∞[×]0, 1[,R2n)

of the form (75), where

S ∈ C0(]0,+∞] × [0, 1], gl(2n)) ∩ Lr(]0, 1[×]0, 1[, gl(2n))

is such that the path S(+∞, ·) : [0, 1] → Sym(2n) is non-degenerate. By Theorem 3.4 (b), D+
S,Ω

is a Fredholm operator of index n/2 − µ(γS(+∞,·)(·)λ0, λ0).

Therefore Σ+ ⊂ Fred(W 1,r
λ0
, Lr) inherits the norm topology and it is the base space of the

restriction of the determinant bundle. As before (and essentially for the same reasons), this line
bundle is non-trivial on some connected component.

If S+ ∈ C0(T, Sym(2n)) (resp. C0([0, 1], Sym(2n))) is a non-degenerate path, we can consider
the subset of Σ+,

Σ+(S+) :=
{
D+

S ∈ Σ+ | S(+∞, ·) = S+(·)
}
.

The space Σ+(S+) is contractible (it is actually star-shaped), so the restriction of the determinant
bundle to it - denote it by Det(Σ+(S+)) - is trivial.

Two orientations o(S1) of Det(Σ+(S1)) and o(S1, S2) of Det(Σ(S1, S2)) induce in a canonical
way an orientation

o(S1)# o(S1, S2)

of Det(Σ+(S2)) (exactly as in section 3 of [10]). By construction,

o(S+)# o(S+, S+) = o(S+). (76)

Associativity now reads as

(o(S1)# o(S1, S2))# o(S2, S3) = o(S1)# (o(S1, S2))# o(S2, S3)). (77)

Let us fix a coherent orientation for Σ. A compatible orientation for Σ+ consists of a set of
orientations o(S+) of Det(Σ+(S+)), for every non-degenerate path S+, such that

o(S1)# o(S1, S2) = o(S2), (78)

for every pair (S1, S2) of non-degenerate paths. A compatible orientation for Σ+ can be constructed
simply by choosing an arbitrary non-degenerate path S0, by fixing an arbitrary orientation o(S0)
of Det(Σ+(S0)), and by setting

o(S+) := o(S0)# o(S0, S
+),

for every non-degenerate path S+. The identity (76) implies that this is well-defined. The com-
patibility condition (78) follows from the associativity property (77) and from the coherence of
the orientation for Σ, i.e. (22). Actually, the above argument shows that there are exactly two
orientations for Σ+ which are compatible with a given coherent orientation for Σ.

For every x ∈ P(H) let Φx be the unitary trivializations of x∗(TT ∗M) mapping λ0 into the
vertical bundle, as chosen in section 1.4. Let Sx be the corresponding non-degenerate path. Let
us fix a coherent orientation for Σ, and a compatible orientation for Σ+. Let us fix orientations of
the unstable manifolds Wu(q), for every q ∈ P(L). These data will now determine an orientation
of

Det(Df∂
+
J,H(u)),

44



the determinant of the fiberwise derivative of the section

∂+
J,H : B+(q, x) → W+(q, x)

at every u ∈ M+(q, x), for every q ∈ P(L) and x ∈ P(H).
Namely, let q ∈ P(L), x ∈ P(H), and u ∈ M+(q, x). The closed finite codimensional subspace

Wu =
{
w ∈ TuB+(q, x) | Dτ∗(u(0, ·))[w(0, ·)] = 0

}

is the kernel of the continuous linear surjective operator

TuB+(q, x) → Tτ∗◦u(0,·)W
u(q), w 7→ Dτ∗(u(0, ·))[w(0, ·)],

so the orientation of Wu(q) induces an orientation of the quotient TuB+(q, x)/Wu, that is an
orientation of the line

Λmax(TuB+(q, x)/Wu).

By Lemma 3.3, we can find a unitary trivialization Φu of u∗(TT ∗M) which agrees with Φx for
s = +∞, and maps λ0 into the vertical subbundle. As we have seen in section 3.1, Φu conjugates
the restriction Df∂

+
J,H(u)|Wu to an operator D+

S belonging to Σ+(Sx). Therefore,

Det(Df∂
+
J,H(u)|Wu) ∼= Det(D+

S )

inherits an orientation from o(Sx). The analogous of Lemma 13 in [10] implies that such an
orientation does not depend on the choice of the trivialization Φu. From the canonical isomorphism
(see (18))

Det(Df∂
+
J,H(u)) ∼= Det(Df∂

+
J,H(u)|Wu) ⊗ Λmax(TuB+(q, x)/Wu),

we get the required orientation of Det(Df∂
+
J,H(u)).

Therefore, when the section ∂+
J,H : B+(q, x) → W+(q, x) is transverse to the zero section, we

obtain an orientation of M+(q, x). In particular, whenm(q) = µ(x), the zero-dimensional manifold
M+(q, x) is oriented, meaning that each point u ∈ M+(q, x) is given a number ǫ(u) ∈ {−1,+1}.

3.3 Compactness and convergence to broken trajectories

The following result is now an easy consequence of the L∞ estimates of Theorem 1.9.

Theorem 3.5 Assume that ‖J−Ĵ‖∞ < j1, where j1 is given by Theorem 1.9. For every q ∈ P(L)
and x ∈ P(H), the space M+

Λ(q, x) (resp. M+
Ω(q, x)) is pre-compact in C∞

loc([0,+∞[×T, T ∗M)
(resp. C∞

loc([0,+∞[×[0, 1], T ∗M)).

Proof. By (58),
A(x) ≤ A(u(s, ·)) ≤ E(q) ∀u ∈ M+(q, x).

Since τ∗u(0, ·) is an element in the unstable manifold of q, which is pre-compact in the W 1,2

topology because of Proposition 2.5, the W 1,2 norm of τ∗u(0, ·) is uniformly bounded. The fact
that r ≤ 4 implies that W 1,2(]0, 1[) continuously embeds into W 1−1/r,r(]0, 1[), so also the W 1−1/r,r

norm of τ∗u(0, ·) is uniformly bounded. By (H1), (H2), and the bound on ‖J − Ĵ‖∞, statements
(iii) and (iv) of Theorem 1.9 imply that M+(q, x) is bounded in L∞.

The fact that ω = dθ implies that for every t ∈ [0, 1], there are no non-constant Jt-holomorphic
spheres in T ∗M , and no non constant Jt-holomorphic discs having boundary on some fiber of T ∗M .
Therefore a standard bubbling off argument implies that M+(q, x) is bounded in C1, and then an
elliptic bootstrap produces bounds for the derivatives of every order (see for instance [9] or [26]
for more details).

The above result has the following consequence, which can be proved by standard methods
from Floer theory (see e.g. [30, 31, 27]).
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Proposition 3.6 Assume that ‖J − Ĵ‖∞ < j1. Let (uh)h∈N be a sequence in M+(q, x) and set
q̄h := uh(0, ·). Then there exist q0 = q, q1, . . . , qa ∈ P(L), x0, x1, . . . , xb = x ∈ P(H), with a, b ∈ N

and
E(q0) > E(q1) > · · · > E(qa) ≥ A(x0) > A(x1) > · · · > A(xb),

curves
q̄1 ∈ Wu(q0) ∩W s(q1), . . . , q̄a ∈ Wu(qa−1) ∩W s(qa),

and maps
u0 ∈ M+(qa, x0), u1 ∈ M(x0, x1), . . . , ub ∈ M(xb−1, xb),

such that a subsequence (q̄hk
, uhk

)k∈N converges to (q̄1, . . . , q̄a;u0, . . . , ub) in the following sense:
there are sequences (tjk)k∈N ⊂]−∞, 0], j ∈ {1, . . . , a}, and (sj

k)k∈N ⊂ [0,+∞[, j ∈ {1, . . . , b}, such
that

φ
t1k
−∇gE

(q̄hk
) → q̄1, . . . , φ

ta
k

−∇gE
(q̄hk

) → q̄a, in Λ1(M) (resp. in Ω1(M, q0, q1)),

and
uhk

→ u0, uhk
(· + s1k, ·) → u1, . . . , uhk

(· + sb
k, ·) → ub in C∞

loc.

3.4 Transversality and gluing

Transversality holds automatically at the stationary solutions. Indeed, we have the following:

Proposition 3.7 Assume that q ∈ P(L) and x ∈ P(H) correspond to the same solution by the
Legendre transform, meaning that LL(t, q(t), q̇(t)) = (t, x(t)) for every t. Then

Df∂
+
J,H(x) : TxB+(q, x) → W+(q, x),

the fiberwise derivative of ∂+
J,H at the stationary solution x, is invertible.

Proof. We already know from Theorem 3.2 that Df∂
+
J,H(x) is Fredholm of index 0, so it is

enough to show that its kernel is (0). If ζ1 and ζ2 are sections of x∗(TT ∗M) → [0, 1], set

〈〈ζ1, ζ2〉〉L2
J

=

∫ 1

0

〈ζ1(t), ζ2(t)〉Jt dt.

Since x is a critical point of A, we have

d2A(x)[ζ1, ζ2] = 〈〈∇2
JA(x)ζ1, ζ2〉〉L2

J
, (79)

where the operator
∇2

JA(x)ζ = −J(t, x)(∇tζ −∇XH(t, x)ζ)

is 〈〈·, ·〉〉L2
J
-symmetric. Here ∇ denotes the t-dependent Levi-Civita covariant derivation corre-

sponding to the t-dependent metric 〈·, ·〉Jt . Moreover,

Df∂
+
J,H(x)v = ∇sv + ∇2

JA(x)v.

Assume that v ∈ kerD∂+
J,H(x): v is aW 1,r section of x∗(TT ∗M) → [0,+∞[×T (resp. x∗(TT ∗M) →

[0,+∞[×[0, 1] with v(s, 0) ∈ T v
x(0)T

∗M , v(s, 1) ∈ T v
x(1)T

∗M for every s ≥ 0) such that

ξ := Dτ∗(x(·))[v(0, ·)] ∈ TqW
u(q), (80)

and
∇sv + ∇2

JA(x)v = 0. (81)

By (80),
d2E(q)[ξ, ξ] ≤ 0. (82)
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Consider the function ϕ : [0,+∞[→ R, ϕ(s) = ‖v(s, ·)‖2
L2

J
. By (81),

ϕ′(s) = −2〈〈v(s, ·),∇2
JA(x)v(s, ·)〉〉L2

J
, (83)

ϕ′′(s) = 4‖∇2
JA(x)v(s, ·)‖2

L2
J
≥ 0. (84)

Therefore ϕ is convex. Since ϕ(s) converges to 0 for s→ +∞, either ϕ is identically zero, or ϕ′(0)
is strictly negative. If by contradiction the second case holds, (79) and (83) imply that

d2A(x)[v(0, ·), v(0, ·)] > 0.

On the other hand, by (82) and Lemma 2.3 we obtain

d2A(x)[v(0, ·), v(0, ·)] ≤ d2E(q)[ξ, ξ] ≤ 0,

a contradiction which proves that v = 0.
We shall denote by Jreg(H, g) the set of all almost complex structures J ∈ J such that for

every q ∈ P(L) and every x ∈ P(H), the section

∂+
J,H : B+(q, x) → W+(q, x)

is transverse to the zero section.

Theorem 3.8 The set Jreg(H, g) is residual in J (H).

Indeed, by Proposition 3.7 transversality is automatic when q and x correspond to the same
solution. If this is not the case and u ∈ M+(q, x), τ∗u(0, ·) cannot be equal to the projection
τ∗ ◦ x (because Wu(q) ∩ crit(E) = {q}), so u is not a stationary solution. Therefore Theorem 3.8
can be proved by a standard argument using the Sard-Smale theorem and the Carleman similarity
principle (see [11]).

The following gluing result can also be proved by standard methods. The proof is completely
analogous to the Floer gluing theorem such as proven in [27] or the one proven in [31].

Proposition 3.9 Assume that J ∈ Jreg(H, g).
(a) Let q0, q1 ∈ P(L), x ∈ P(H), with µ(x) = m(q1) = m(q0) − 1, let q̄1 ∈ Wu(q0) ∩W s(q1),

and u0 ∈ M+(q1, x). Then there exists a smooth curve [0, 1[→ M+(q0, x), r 7→ u(r), unique up
to reparameterization and up to choice of its value at r = 0, which converges to (q̄1;u0) in the
sense of Proposition 3.6 for r → 1. Such a curve is orientation preserving - with respect to the
orientation of M+(q0, x) defined in section 3.2 - if and only if ǫ([q̄1])ǫ(u0) = 1.

(b) Let q ∈ P(L), x0, x1 ∈ P(H), with m(q) = µ(x0) = µ(x1) + 1, let u0 ∈ M+(q, x0), and
u1 ∈ M(x0, x1). Then there exists a smooth curve [0, 1[→ M+(q, x1), r 7→ u(r), unique up to
reparameterization and up to choice of its value at r = 0, which converges to (∅;u0, u1) in the
sense of Proposition 3.6 for r → 1. Such a curve is orientation preserving - with respect to the
orientation of M+(q, x1) defined in section 3.2 - if and only if ǫ(u0)ǫ([u1]) = 1.

3.5 The isomorphism

Let us prove Theorem 3.1. Since the isomorphism class of the Floer complex {CF∗(H), ∂∗(H, J)}
does not depend on J ∈ Jreg(H) (Theorem 1.12), by Theorem 3.8 we may assume that J also

belongs to Jreg(H, g) and that ‖J − Ĵ‖∞ < j1, where j1 is given by Theorem 1.9.
Let q ∈ P(L) and x ∈ P(H) with m(q) = µ(x). Then the zero-dimensional manifold M+(q, x)

is compact: otherwise we could deduce a violation of transversality from Proposition 3.6. There-
fore, M+(q, x) is a finite set, and we can indicate by n+(q, x) the integer

n+(q, x) =
∑

u∈M+(q,x)

ǫ(u),

47



the numbers ǫ(u) having being defined in section 3.2. The sequence of homomorphisms

Θk = Θk(H, J, g) : CMk(E) → CFk(H), k ∈ N,

can be defined in terms of the generators as

Θkq =
∑

x∈P(H)
µ(x)=k

n+(q, x)x, for q ∈ P(L), m(q) = k.

A standard argument using Propositions 3.6 and 3.9 implies that Θ is a chain homomorphism,
meaning that

Θk−1∂k(E , g) = ∂k(H, J)Θk ∀k ≥ 1.

Assume that E(q) ≤ A(x). Then (58) implies that M+(q, x) is empty - hence n+(q, x) = 0 - unless
q and x correspond to the same solution by the Legendre transform, in which case M+(q, x) =
{(q, x)} - hence n+(q, x) = ±1. Let us order the generators of CMk(E) and CFk(H) by increasing
action, choosing any order for subsets of solutions with identical action (but keeping the same order
for the solutions of the Lagrangian system and the corresponding solutions of the Hamiltonian
system). Then the homomorphism Θk is represented by a (possibly infinite) square matrix which
is lower triangular and has the entries ±1 on the diagonal. Such a homomorphism is necessarily
invertible, hence Θ is a chain complex isomorphism.

Finally, M(q, x) is necessarily empty - hence n+(q, x) = 0 - if q and τ∗ ◦ x are not homotopic
within the space of free loops (resp. within the space of curves joining q0 to q1). Therefore Θ is
compatible with the splitting of the Morse and the Floer complexes corresponding to the partition
of π1(M) into its conjugacy classes (resp. into its elements). This completes the proof of Theorem
3.1.
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[15] R. Mañé, Global variational methods in conservative dynamics, IMPA, Rio de Janeiro, 1991.

[16] V. G. Maz’ja, Sobolev spaces, Springer-Verlag, New York, 1985.

[17] D. McDuff and D. Salamon, J-holomorphic curves and symplectic topology, Colloquium Pub-
lications, vol. 52, American Mathematical Society, Providence, R.I., 2004.

[18] D. Milinkovic and Y. G. Oh, Floer homology as a stable Morse homology, J. Korean Math.
Soc. 34 (1997), 1065–1087.

[19] D. Milinkovic and Y. G. Oh, Generating function versus the action functional, Geometry,
Topology and Dynamics, CRM Proc. Lecture Notes, vol. 15, Amer. Math. Soc., Providence,
RI, 1998, pp. 107–125.

[20] Y. G. Oh, Symplectic topology as the topology of action functional. I - Relative Floer theory
on the cotangent bundle, J. Diff. Geom. 46 (1997), 499–577.

[21] R. S. Palais, Morse theory on Hilbert manifolds, Topology 2 (1963), 299–340.

[22] D. Quillen, Determinants of Cauchy-Riemann operators over a Riemann surface, Functional
Anal. Appl. 19 (1985), 31–34.

[23] A. Ramirez, Ph.D. thesis, Stanford University, 2004, in preparation.

[24] J. Robbin and D. Salamon, Maslov index theory for paths, Topology 32 (1993), 827–844.

[25] J. Robbin and D. Salamon, The spectral flow and the Maslov index, Bull. London Math. Soc.
27 (1995), 1–33.

[26] D. Salamon, Morse theory, the Conley index and Floer homology, Bull. London Math. Soc.
22 (1990), 113–140.

[27] D. Salamon, Lectures on Floer homology, Symplectic geometry and topology (Y. Eliashberg
and L. Traynor, eds.), IAS/Park City Mathematics Series, Amer. Math. Soc., 1999, pp. 143–
225.

[28] D. Salamon and J. Weber, Floer homology and the heat flow, e-print arXiv:math.SG/0304383,
2003.

[29] D. Salamon and E. Zehnder, Morse theory for periodic solutions of Hamiltonian systems and
the Maslov index, Comm. Pure Appl. Math. 45 (1992), 1303–1360.

[30] M. Schwarz, Morse homology, Birkhäuser, Basel, 1993.
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